Fatty acid and phorbol ester-mediated interference of mitogenic signaling via novel protein kinase C isoforms in pancreatic β-cells (INS-1)

被引:39
作者
Wrede, CE
Dickson, LM
Lingohr, MK
Briaud, I
Rhodes, CJ [1 ]
机构
[1] Univ Washington, Pacific NW Res Inst, Seattle, WA 98122 USA
[2] Univ Washington, Dept Pharmacol, Seattle, WA 98122 USA
关键词
D O I
10.1677/jme.0.0300271
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
It is possible that activation of protein kinase C (PKC) isoforms by free fatty acids (FFA) plays a role in the failure of pancreatic beta-cell mass expansion to compensate for peripheral insulin resistance in the pathogenesis of type-2 diabetes. The effect of lipid moieties on activation of conventional (PKC-alpha and -beta1), novel (PKC-delta) and atypical (PKC-zeta) PKC isoforms was evaluated in an in vitro assay, using biotinylated neurogranin as a substrate. Oleoyl-Coenzyme A (CoA) and palmitoyl-CoA, but not unesterified FFA, significantly increased the activity of all PKC isoforms (Pless than or equal to0.05), particularly that for PKC-delta. It was found that FFA (0.4 mM oleate/complexed to 0.5% bovine serum albumin) inhibited IGF-I-induced activation of protein kinase B (PKB) in the pancreatic beta-cell line (INS-1), but this was alleviated in the presence of the general PKC inhibitor (Go6850; 1 muM). To further investigate whether conventional or novel PKC isoforms adversely affect beta-cell proliferation, the effect of phorbol ester (phorbol 12-myristate 13-acetate; PMA)-mediated activation of these PKC isoforms on glucose/IGF-I-induced INS-1 cell mitogenesis, and insulin receptor substrate (IRS)-mediated signal transduction was investigated. PMA-mediated activation of PKC (100 nM; 4 h) reduced glucose/IGF-I mediated beta-cell mitogenesis (>50%; Pless than or equal to0.05), which was reversible by the general PKC inhibitor Go6850 (1 muM), indicating an effect of PKC and not due to a non-specific PMA toxicity. PMA inhibited IGF-I-induced activation of PKB, correlating with inhibition of IGF-I-induced association of IRS-2 with the p85 regulatory subunit of phosphatidylinositol-3 kinase. However, in contrast, PMA activated the mitogen-activated protein kinases, Erk1/2. Titration inhibition analysis using PKC isoform inhibitors indicated that these PMA-induced effects were via novel PKC isoforms. Thus, FFA/PMA-induced activation of novel PKC isoforms can inhibit glucose/IGF-I-mediated beta-cell mitogenesis, in part by decreasing PKB activation, despite an upregulation of Erk1/2. Thus, activation of novel PKC isoforms by long-chain acyl-CoA may well contribute to decreasing beta-cell mass in the pathogenesis of type-2 diabetes, similar to their inhibition of insulin signal transduction which causes insulin resistance.
引用
收藏
页码:271 / 286
页数:16
相关论文
共 63 条
[1]   ESTABLISHMENT OF 2-MERCAPTOETHANOL-DEPENDENT DIFFERENTIATED INSULIN-SECRETING CELL-LINES [J].
ASFARI, M ;
JANJIC, D ;
MEDA, P ;
LI, GD ;
HALBAN, PA ;
WOLLHEIM, CB .
ENDOCRINOLOGY, 1992, 130 (01) :167-178
[2]  
BELL RM, 1991, J BIOL CHEM, V266, P4661
[3]   Mode of regulation of the extracellular signal-regulated kinases in the pancreatic β-cell line MIN6 and their implication in the regulation of insulin gene transcription [J].
Benes, C ;
Poitout, V ;
Marie, JC ;
Martin-Perez, J ;
Roisin, MP ;
Fagard, R .
BIOCHEMICAL JOURNAL, 1999, 340 :219-225
[4]   IGF-I: A mitogen also involved in differentiation processes in mammalian cells [J].
Benito, M ;
Valverde, AM ;
Lorenzo, M .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1996, 28 (05) :499-510
[5]   Chronic exposure to free fatty acid reduces pancreatic β cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation [J].
Bollheimer, LC ;
Skelly, RH ;
Chester, MW ;
McGarry, JD ;
Rhodes, CJ .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (05) :1094-1101
[6]   DIACYLGLYCEROL ACTIVATION OF PROTEIN KINASE-C IS MODULATED BY LONG-CHAIN ACYL-COA [J].
BRONFMAN, M ;
MORALES, MN ;
ORELLANA, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1988, 152 (03) :987-992
[7]   Protein kinase Cζ activation mediates glucagon-like peptide-1-induced pancreatic β-cell proliferation [J].
Buteau, J ;
Foisy, S ;
Rhodes, CJ ;
Carpenter, L ;
Biden, TJ ;
Prentki, M .
DIABETES, 2001, 50 (10) :2237-2243
[8]   Ca2+-calmodulin and protein kinase Cs:: a hypothetical synthesis of their conflicting convergences on shared substrate domains [J].
Chakravarthy, B ;
Morley, P ;
Whitfield, J .
TRENDS IN NEUROSCIENCES, 1999, 22 (01) :12-16
[9]   SYNERGISTIC ACTIVATION OF TYPE-III PROTEIN-KINASE-C BY CIS-FATTY ACID AND DIACYLGLYCEROL [J].
CHEN, SG ;
MURAKAMI, K .
BIOCHEMICAL JOURNAL, 1992, 282 :33-39
[10]   Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation [J].
Cnop, M ;
Hannaert, JC ;
Hoorens, A ;
Eizirik, DL ;
Pipeleers, DG .
DIABETES, 2001, 50 (08) :1771-1777