Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry

被引:157
作者
Brovkin, Victor
Ganopolski, Andrey
Archer, David
Rahmstorf, Stefan
机构
[1] Potsdam Inst Climate Impact Res, Potsdam, Germany
[2] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA
来源
PALEOCEANOGRAPHY | 2007年 / 22卷 / 04期
关键词
D O I
10.1029/2006PA001380
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We use an Earth system model of intermediate complexity, CLIMBER-2, to investigate what recent improvements in the representation of the physics and biology of the glacial ocean imply for the atmospheric concentration. The coupled atmosphere-ocean model under the glacial boundary conditions is able to reproduce the deep, salty, stagnant water mass inferred from Antarctic deep pore water data and the changing temperature of the entire deep ocean. When carbonate compensation is included in the model, we find a CO2 drawdown of 43 ppmv associated mainly with the shoaling of the Atlantic thermohaline circulation and an increased fraction of water masses of southern origin in the deep Atlantic. Fertilizing the Atlantic and Indian sectors of the Southern Ocean north of the polar front leads to a further drawdown of 37 ppmv. Other changes to the glacial carbon cycle include a decrease in the amount of carbon stored in the terrestrial biosphere ( 540 Pg C), which increases atmospheric CO2 by 15 ppmv, and a change in ocean salinity resulting from a drop in sea level, which elevates CO2 by another 12 ppmv. A decrease in shallow water CaCO3 deposition draws down CO2 by 12 ppmv. In total, the model is able to explain more than two thirds ( 65 ppmv) of the glacial to interglacial CO2 change, based only on mechanisms that are clearly documented in the proxy data. A good match between simulated and reconstructed distribution of delta C-13 changes in the deep Atlantic suggests that the model captures the mechanisms of reorganization of biogeochemistry in the Atlantic Ocean reasonably well. Additional, poorly constrained mechanisms to explain the rest of the observed drawdown include changes in the organic carbon: CaCO3 ratio of sediment rain reaching the seafloor, iron fertilization in the subantarctic Pacific Ocean, and changes in terrestrial weathering.
引用
收藏
页数:14
相关论文
共 87 条
[1]   Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean [J].
Abelmann, A ;
Gersonde, R ;
Cortese, G ;
Kuhn, G ;
Smetacek, V .
PALEOCEANOGRAPHY, 2006, 21 (01)
[2]   The salinity, temperature, and δ18O of the glacial deep ocean [J].
Adkins, JF ;
McIntyre, K ;
Schrag, DP .
SCIENCE, 2002, 298 (5599) :1769-1773
[3]   Glacial-interglacial stability of ocean pH inferred from foraminifer dissolution rates [J].
Anderson, DM ;
Archer, D .
NATURE, 2002, 416 (6876) :70-73
[4]  
[Anonymous], 2014, EARTHS CLIMATE FUTUR
[5]   What caused the glacial/interglacial atmospheric pCO2 cycles? [J].
Archer, D ;
Winguth, A ;
Lea, D ;
Mahowald, N .
REVIEWS OF GEOPHYSICS, 2000, 38 (02) :159-189
[6]   MODELING THE CALCITE LYSOCLINE [J].
ARCHER, D .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1991, 96 (C9) :17037-17050
[7]   The importance of ocean temperature to global biogeochemistry [J].
Archer, D ;
Martin, P ;
Buffett, B ;
Brovkin, V ;
Rahmstorf, S ;
Ganopolski, A .
EARTH AND PLANETARY SCIENCE LETTERS, 2004, 222 (02) :333-348
[8]   EFFECT OF DEEP-SEA SEDIMENTARY CALCITE PRESERVATION ON ATMOSPHERIC CO2 CONCENTRATION [J].
ARCHER, D ;
MAIERREIMER, E .
NATURE, 1994, 367 (6460) :260-263
[9]   A data-driven model of the global calcite lysocline [J].
Archer, D .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (03) :511-526
[10]   A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains [J].
Archer, DE ;
Morford, JL ;
Emerson, SR .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (01)