Cycles in the cube-connected cycles graph

被引:27
作者
Germa, A
Heydemann, MC
Sotteau, D
机构
[1] Univ Paris Sud, CNRS, UA 410, LRI, F-91405 Orsay, France
[2] ENST, Paris 13, France
关键词
D O I
10.1016/S0166-218X(98)80001-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of cycles of all lengths in the cube-connected cycles graph and we establish that this graph is no far from being pancyclic in case n odd and bi-pancyclic in case n even. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:135 / 155
页数:21
相关论文
共 8 条
[1]   GROUP ACTION GRAPHS AND PARALLEL ARCHITECTURES [J].
ANNEXSTEIN, F ;
BAUMSLAG, M ;
ROSENBERG, AL .
SIAM JOURNAL ON COMPUTING, 1990, 19 (03) :544-569
[2]  
Berge C, 1973, GRAPHS HYPERGRAPHS
[3]  
BONDY A, 1973, COLL SOC J BOLYA KES, V10, P181
[4]  
Feldmann R., 1992, Parallel Processing Letters, V2, P13, DOI 10.1142/S0129626492000131
[5]   Spanners of hypercube-derived networks [J].
Heydemann, MC ;
Peters, JG ;
Sotteau, D .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (01) :37-54
[6]   THE CUBE-CONNECTED CYCLES - A VERSATILE NETWORK FOR PARALLEL COMPUTATION [J].
PREPARATA, FP ;
VUILLEMIN, J .
COMMUNICATIONS OF THE ACM, 1981, 24 (05) :300-309
[7]  
ROSENBERG AL, 1991, UMCS199120 U MASS
[8]   ON HAMILTONIAN CYCLES IN CAYLEY-GRAPHS OF WREATH-PRODUCTS [J].
STONG, R .
DISCRETE MATHEMATICS, 1987, 65 (01) :75-80