Paclitaxel-functionalized gold nanoparticles

被引:351
作者
Gibson, Jacob D. [1 ]
Khanal, Bishnu P. [1 ]
Zubarev, Eugene R. [1 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
关键词
D O I
10.1021/ja075181k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we describe the first example of 2 nm gold nanoparticles (Au NPs) covalently functionalized with a chemotherapeutic drug, paclitaxel. The synthetic strategy involves the attachment of a flexible hexaethylene glycol linker at the C-7 position of paclitaxel followed by coupling of the resulting linear analogue to phenol-terminated gold nanocrystals. The reaction proceeds under mild esterification conditions and yields the product with a high molecular weight, while exhibiting an extremely low polyclispersity index (1.02, relative to linear polystyrene standards). TGA analysis of the hybrid nanoparticles reveals the content of the covalently attached organic shell as nearly 67% by weight, which corresponds to similar to 70 molecules of paclitaxel per 1 nanoparticle. The presence of a paclitaxel shell with a high grafting density renders the product soluble in organic solvents and allows for detailed H-1 NMR analysis and, therefore, definitive confirmation of its chemical structure. High-resolution TEM was employed for direct visualization of the inorganic core of hybrid nanoparticles, which were found to retain their average size, shape, and high crystallinity after multiple synthetic steps and purifications. The interparticle distance substantially increases after the attachment of paclitaxel as revealed by low-magnification TEM, suggesting the presence of a larger organic shell. The method described here demonstrates that organic molecules with exceedingly complex structures can be covalently attached to gold nanocrystals in a controlled manner and fully characterized by traditional analytical techniques. In addition, this approach gives a rare opportunity to prepare hybrid particles with a well-defined amount of drug and offers a new alternative for the design of nanosized drug-delivery systems.
引用
收藏
页码:11653 / 11661
页数:9
相关论文
共 91 条
  • [1] The use of nanocrystals in biological detection
    Alivisatos, P
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (01) : 47 - 52
  • [2] Light-responsive polyelectrolyte/gold nanoparticle microcapsules
    Angelatos, AS
    Radt, B
    Caruso, F
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (07) : 3071 - 3076
  • [3] Self-assembled monolayers on gold nanoparticles
    Badia, A
    Singh, S
    Demers, L
    Cuccia, L
    Brown, GR
    Lennox, RB
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 1996, 2 (03) : 359 - 363
  • [4] Self-assembled lipid superstructures: Beyond vesicles and liposomes
    Barauskas, J
    Johnsson, M
    Tiberg, F
    [J]. NANO LETTERS, 2005, 5 (08) : 1615 - 1619
  • [5] Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems
    Berry, V
    Gole, A
    Kundu, S
    Murphy, CJ
    Saraf, RF
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (50) : 17600 - 17601
  • [6] SYNTHESIS AND REACTIONS OF FUNCTIONALIZED GOLD NANOPARTICLES
    BRUST, M
    FINK, J
    BETHELL, D
    SCHIFFRIN, DJ
    KIELY, C
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1995, (16) : 1655 - 1656
  • [7] DNA-modified core-shell Ag/Au nanoparticles
    Cao, YW
    Jin, R
    Mirkin, CA
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (32) : 7961 - 7962
  • [8] Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells
    Chen, Jingyi
    Wang, Danling
    Xi, Jiefeng
    Au, Leslie
    Siekkinen, Andy
    Warsen, Addie
    Li, Zhi-Yuan
    Zhang, Hui
    Xia, Younan
    Li, Xingde
    [J]. NANO LETTERS, 2007, 7 (05) : 1318 - 1322
  • [9] Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes
    Chithrani, B. Devika
    Chan, Warren C. W.
    [J]. NANO LETTERS, 2007, 7 (06) : 1542 - 1550
  • [10] Directed assembly of discrete gold nanoparticle groupings using branched DNA scaffolds
    Claridge, SA
    Goh, SL
    Fréchet, JMJ
    Williams, SC
    Micheel, CM
    Alivisatos, AP
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (07) : 1628 - 1635