AC impedance study on the interface of lithium and polymer electrolyte based on lithium-N(4-sulfophenyl) maleimide

被引:14
作者
Xu, W [1 ]
Siow, KS [1 ]
Gao, ZQ [1 ]
Lee, SY [1 ]
机构
[1] Natl Univ Singapore, Dept Chem, Singapore 119260, Singapore
关键词
AC impedance; passivation; lithium/polymer electrolyte interface; single ionic conductive polymer; N(4-sulfophenyl) maleimide copolymer;
D O I
10.1016/S0167-2738(98)00228-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The properties of the interface between lithium electrode and polymer electrolyte, poly[lithium-N(4-sulfophenyl) maleimide-co-methoxy oligo(ethyleneoxy) methacrylate] with single lithium ionic conduction, have been investigated by A.C. impedance technique. The impedance spectrum for stainless steel electrode shows a semicircle and a straight line, while that for lithium electrode has two separate imperfect semicircles and a spur. This difference suggests that a passivation layer has formed between the interface of the Li/polymer electrolyte. The dependence of the impedance spectra on storage time and temperature has been interpreted using an assumed equivalent circuit. It is revealed that the passivation layer is composed of a combination of solid inorganic and polymeric salts resulting from the reactions of lithium metal with the residual moisture and the polymer electrolyte, and has the characteristics of ionic conductive behavior. It grows rapidly on the surface of the lithium electrode during the initial period after the assembly of cells. The growth of the passivation layer will affect the nature of the polymer electrolyte and lead to an increase in the bulk resistance of the polymer electrolyte. Using the impedance spectra of cells with the stainless steel electrode, the dielectric property of the polymer electrolyte has also been studied. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 21 条
[1]   AMBIENT-TEMPERATURE RECHARGEABLE POLYMER-ELECTROLYTE BATTERIES [J].
ABRAHAM, KM ;
ALAMGIR, M .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :195-208
[2]   Highly conductive PEO-like polymer electrolytes [J].
Abraham, KM ;
Jiang, Z ;
Carroll, B .
CHEMISTRY OF MATERIALS, 1997, 9 (09) :1978-1988
[3]   LI+-CONDUCTIVE SOLID POLYMER ELECTROLYTES WITH LIQUID-LIKE CONDUCTIVITY [J].
ABRAHAM, KM ;
ALAMGIR, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (05) :1657-1657
[4]   KINETICS AND STABILITY OF THE LITHIUM ELECTRODE IN POLY(METHYLMETHACRYLATE)-BASED GEL ELECTROLYTES [J].
APPETECCHI, GB ;
CROCE, F ;
SCROSATI, B .
ELECTROCHIMICA ACTA, 1995, 40 (08) :991-997
[5]  
CROCE F, 1994, ELECTROCHIM ACTA, V39, P2187
[6]   INTERFACIAL PHENOMENA IN POLYMER-ELECTROLYTE CELLS - LITHIUM PASSIVATION AND CYCLEABILITY [J].
CROCE, F ;
SCROSATI, B .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :9-19
[7]  
FIONA M, 1991, SOLID POLYM ELECTROL
[8]   Studies of some poly(vinylidene fluoride) electrolytes [J].
Jiang, Z ;
Carroll, B ;
Abraham, KM .
ELECTROCHIMICA ACTA, 1997, 42 (17) :2667-2677
[9]   HIGH-FREQUENCY IMPEDANCE OF POLY(ETHYLENE OXIDE) AND RELATED POLYMERS DOPED WITH LITHIUM PERCHLORATE [J].
LINDEN, E ;
OWEN, JR .
BRITISH POLYMER JOURNAL, 1988, 20 (03) :237-241
[10]  
MACALLUM JM, 1989, POLYM ELECTROLYTE RE, V2