The use of conditional probability functions and potential source contribution functions to identify source regions and advection pathways of hydrocarbon emissions in Houston, Texas

被引:38
作者
Xie, Yulong [1 ]
Berkowitz, Carl M. [1 ]
机构
[1] Pacific NW Natl Lab, Nat Resource Div, Richland, WA 99352 USA
关键词
conditional probability function (CPF); potential source contribution function (PSCF); hierarchical clustering analysis (HAC); Houston; volatile organic compound (VOC); source receptor relationship;
D O I
10.1016/j.atmosenv.2007.03.049
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, we demonstrate the utility of conditional probability functions (CPFs), potential source contribution functions (PSCFs), and hierarchical clustering analysis (HAC) to identify the source region and transport pathways of hydrocarbons measured at five photochemical assessment monitoring stations (PAMS) near the Houston Ship Channel from June to October 2003. In contrast to scatter plots, which only show the pair-wise correlation of species, commonality in CPF figures shows both correlation and information on the source region of the species in question. In this study, we use over 50 hourly volatile organic compound (VOC) concentrations and surface wind observations to show that VOCs with similar CPF patterns likely have common transport pathways. This was established with the multivariate technique, which uses the hierarchical clustering analysis to define clusters of VOCs having similar CPF patterns. This method revealed that alkenes, and in particular those with geometric isomers such as cis-/trans-2-butene and cis-/trans-2-pentene, have similar CPF patterns and hence, a common area of origin. The alkane isomers often show CPF patterns among themselves, and similarly, aromatic compounds often show similar patterns. We also show how calculated trajectory information can be used in the PSCF analysis to produce a graphic picture that identifies specific geographic areas associated with a given VOC (or other pollutant). The use of these techniques in the chemically and meteorologically complex environment of Houston, Texas, suggests its further utility in other areas with relatively simpler conditions. (C) 2007 Published by Elsevier Ltd.
引用
收藏
页码:5831 / 5847
页数:17
相关论文
共 50 条
[1]  
[Anonymous], 1975, CLUSTERING ALGORITHM
[2]   A RESIDENCE TIME PROBABILITY ANALYSIS OF SULFUR CONCENTRATIONS AT GRAND-CANYON-NATIONAL-PARK [J].
ASHBAUGH, LL ;
MALM, WC ;
SADEH, WZ .
ATMOSPHERIC ENVIRONMENT, 1985, 19 (08) :1263-1270
[3]   Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh [J].
Begum, BA ;
Kim, E ;
Biswas, SK ;
Hopke, PK .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (19) :3025-3038
[4]   Chemical and meteorological characteristics associated with rapid increases of O3 in Houston, Texas -: art. no. D10307 [J].
Berkowitz, CM ;
Jobson, T ;
Jiang, GF ;
Spicer, CW ;
Doskey, PV .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D10) :D103071-12
[5]  
Berkowitz CM, 2005, ATMOS ENVIRON, V39, P3383, DOI 10.1016/j.atmosenv.2004.12.007
[6]   A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants [J].
Brankov, E ;
Rao, ST ;
Porter, PS .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (09) :1525-1534
[7]  
BROWN SG, 2003, 9007002317FR STI
[8]   The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head, Ireland [J].
Cape, JN ;
Methven, J ;
Hudson, LE .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (22) :3651-3663
[9]   QUALITATIVE DETERMINATION OF SOURCE REGIONS OF AEROSOL IN CANADIAN HIGH ARCTIC [J].
CHENG, MD ;
HOPKE, PK ;
BARRIE, L ;
RIPPE, A ;
OLSON, M ;
LANDSBERGER, S .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1993, 27 (10) :2063-2071
[10]   A RECEPTOR-ORIENTED METHODOLOGY FOR DETERMINING SOURCE REGIONS OF PARTICULATE SULFATE OBSERVED AT DORSET, ONTARIO [J].
CHENG, MD ;
HOPKE, PK ;
ZENG, YS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D9) :16839-16849