Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant

被引:49
作者
Stern, SA [1 ]
Krishnakumar, B
Charati, SG
Amato, WS
Friedman, AA
Fuess, DJ
机构
[1] Syracuse Univ, Dept Chem Engn & Mat Sci, Syracuse, NY 13244 USA
[2] Syracuse Univ, Dept Civil & Environm Engn, Syracuse, NY 13244 USA
[3] Niagara Mohawk Power Corp, Syracuse, NY 13202 USA
关键词
gas separations; biogas upgrading; biogas pilot plant;
D O I
10.1016/S0376-7388(98)00238-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A bench-scale membrane pilot plant for upgrading biogas generated at a municipal wastewater treatment plant was constructed and operated for extended periods of time. The raw biogas was available at 45-60 psia (3.1-4.1 bar) and contained 62.6 mol% CH4, the balance being mainly CO2 and a large number of organic impurities. The operation of the pilot plant was tested with two identical hollow-fiber modules for periods of over 1000 h (41 days) with each module. One of the hollow-fiber modules was tested at an average pressure of about 525 psia (36 bar) and at stage-cuts of 0.34-0.41, and the other module at about 423 psia (29 bar) and at stage-cuts of 0.36-0.39. The flow rates of the biogas feed were 30-36 ft(3)/h (2.4x10(-4)-2.8 x 10(-4) m(3)/s) and 21-24 ft(3)/h (1.7 x 10(-4)-1.9 x 10(-4) m(3)/s), respectively. The CH4 concentration in the retentate stream (the upgraded biogas) was raised in these tests to 92-95 mol% CH4. The performance of the pilot plant was stable over the entire test periods. An even higher CH4 concentration of 97 mol% was reached in short-term tests at a stage-cut of 0.46. The raw biogas had to be pretreated to prevent the condensation of organic impurities which tended to dissolve the hollow fibers. Upgraded biogas containing over 90 mol% CH4 produced in a large-scale membrane separation plant could be used for the generation of electricity. At the same time, the permeate (waste) stream would contain over 15 mol% CH4 and could be used for heating applications. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 18 条
[1]  
[Anonymous], ENERGY PROG
[2]   MEMBRANE PROCESSES FOR THE REMOVAL OF ACID GASES FROM NATURAL-GAS .2. EFFECTS OF OPERATING-CONDITIONS, ECONOMIC-PARAMETERS, AND MEMBRANE-PROPERTIES [J].
BHIDE, BD ;
STERN, SA .
JOURNAL OF MEMBRANE SCIENCE, 1993, 81 (03) :239-252
[3]   MEMBRANE PROCESSES FOR THE REMOVAL OF ACID GASES FROM NATURAL-GAS .1. PROCESS CONFIGURATIONS AND OPTIMIZATION OF OPERATING-CONDITIONS [J].
BHIDE, BD ;
STERN, SA .
JOURNAL OF MEMBRANE SCIENCE, 1993, 81 (03) :209-237
[4]  
CALABRO LA, 1995, 50 IND WAST C PURD U
[5]   Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity [J].
Chatterjee, G ;
Houde, AA ;
Stern, SA .
JOURNAL OF MEMBRANE SCIENCE, 1997, 135 (01) :99-106
[6]  
Cheremisinoff N., 1980, BIOMASS APPL TECHNOL
[7]  
GRADY GPL, 1980, BIOL WASTEWATER TREA
[8]   FUEL GAS PURIFICATION WITH PERMSELECTIVE MEMBRANES [J].
KIMURA, SG ;
WALMET, GE .
SEPARATION SCIENCE AND TECHNOLOGY, 1980, 15 (04) :1115-1133
[9]  
Kohl A. L, 1985, Gas Purification
[10]  
KOROS WJ, 1987, HDB SEPARATION PROCE, P1