Pixon-based image segmentation with Markov random fields

被引:46
作者
Yang, FG [1 ]
Jiang, TZ
机构
[1] Acad Sinica, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
[2] Univ Houston, Dept Comp Sci, Houston, TX 77204 USA
基金
中国国家自然科学基金;
关键词
image segmentation; Markov random fields; pixon;
D O I
10.1109/TIP.2003.817242
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is an essential processing step for many image analysis applications. In this paper, we propose a novel pixon-based adaptive scale method for image segmentation. The key idea of our approach is that a pixon-based image model is combined with a Markov random field (MRF) model under a Bayesian framework. In our method, we introduce a new pixon scheme that is more suitable for image segmentation than the "fuzzy" pixon scheme. The anisotropic diffusion equation is successfully used to form the pixons in our new pixon scheme. Experimental results demonstrate that our algorithm performs fairly well and computational costs decrease dramatically compared with the pixel-based MRF algorithm.
引用
收藏
页码:1552 / 1559
页数:8
相关论文
共 29 条
[1]   CLASSIFICATION OF BINARY RANDOM PATTERNS [J].
ABEND, K ;
HARLEY, TJ ;
KANAL, LN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (04) :538-544
[2]   Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation [J].
Andrey, P ;
Tarroux, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) :252-262
[3]   REVIEW OF MR IMAGE SEGMENTATION TECHNIQUES USING PATTERN-RECOGNITION [J].
BEZDEK, JC ;
HALL, LO ;
CLARKE, LP .
MEDICAL PHYSICS, 1993, 20 (04) :1033-1048
[4]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[5]   IMAGE SEGMENTATION BY CLUSTERING [J].
COLEMAN, GB ;
ANDREWS, HC .
PROCEEDINGS OF THE IEEE, 1979, 67 (05) :773-785
[6]   MARKOV RANDOM FIELD TEXTURE MODELS [J].
CROSS, GR ;
JAIN, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (01) :25-39
[7]   TABOO SEARCH - AN APPROACH TO THE MULTIPLE MINIMA PROBLEM [J].
CVIJOVIC, D ;
KLINOWSKI, J .
SCIENCE, 1995, 267 (5198) :664-666
[8]   MODELING AND SEGMENTATION OF NOISY AND TEXTURED IMAGES USING GIBBS RANDOM-FIELDS [J].
DERIN, H ;
ELLIOTT, H .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (01) :39-55
[9]   A Markov pixon information approach for low-level image description [J].
Descombes, X ;
Kruggel, F .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (06) :482-494
[10]  
Dubes R.C., 1989, J APPL STAT, V16, P131, DOI DOI 10.1080/02664768900000014