Billiards in polygons: Survey of recent results

被引:132
作者
Gutkin, E
机构
[1] Mathematics Department, University of Southern California, Los Angeles
关键词
orbit ergodicity; coding; complexity; entropy; periodicity;
D O I
10.1007/BF02183637
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the dynamics of polygonal billiards.
引用
收藏
页码:7 / 26
页数:20
相关论文
共 56 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]  
[Anonymous], 1992, GEOM FUNCT ANAL, DOI DOI 10.1007/BF01896876
[3]   CUTTING AND STACKING, INTERVAL EXCHANGES AND GEOMETRIC-MODELS [J].
ARNOUX, P ;
ORNSTEIN, DS ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (1-2) :160-168
[4]  
ARNOUX P, 1987, SEM BOURB, V696, P203
[5]  
ARNOUX P, 1981, THEORIE ERGODIQUE, P5
[6]   BILLIARDS IN POLYGONS [J].
BOLDRIGHINI, C ;
KEANE, M ;
MARCHETTI, F .
ANNALS OF PROBABILITY, 1978, 6 (04) :532-540
[7]   A UNIQUE ERGODICITY OF MINIMAL SYMBOLIC FLOWS WITH LINEAR BLOCK GROWTH [J].
BOSHERNITZAN, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1984, 44 :77-96
[8]  
BOSHERNITZAN M, 1994, INTERVAL TRANSLATION
[9]  
BOSHERNITZAN M, 1985, DUKE MATH J, V52, P725
[10]  
BOSHERNITZAN M, 1994, SOME REMARKS PERIODI