Intercomparison of shortwave radiative transfer codes and measurements

被引:94
作者
Halthore, RN
Crisp, D
Schwartz, SE
Anderson, GP
Berk, A
Bonnel, B
Boucher, O
Chang, FL
Chou, MD
Clothiaux, EE
Dubuisson, P
Fomin, B
Fouquart, Y
Freidenreich, S
Gautier, C
Kato, S
Laszlo, I
Li, Z
Mather, JH
Plana-Fattori, A
Ramaswamy, V
Ricchiazzi, P
Shiren, Y
Trishchenko, A
Wiscombe, W
机构
[1] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA
[2] NOAA, Climate Monitoring & Diagnost Lab, Boulder, CO 80303 USA
[3] Spectral Sci Inc, Burlington, MA 01803 USA
[4] Univ Lille 1, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France
[5] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
[6] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA
[7] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[8] Univ Littoral Cote dOpale, ELICO, F-62930 Wimereux, France
[9] IV Kurchatov Atom Energy Inst, Moscow 123182, Russia
[10] Princeton Univ, Geophys Fluid Dynam Lab, NOAA, Princeton, NJ 08542 USA
[11] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA
[12] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23681 USA
[13] NOAA, Natl Environm Satellite Data & Informat Serv, Camp Springs, MD 20746 USA
[14] Pacific NW Natl Lab, Richland, WA 99352 USA
[15] Univ Sao Paulo, Dept Ciencias Atmosfer, Inst Astron & Geofis, BR-05508900 Sao Paulo, Brazil
[16] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11794 USA
[17] Natl Resources Canada, Canada Ctr Remote Sensing, Ottawa, ON K1A 0Y7, Canada
[18] NASA, Goddard Space Flight Ctr, Climate & Radiat Branch, Atmospheres Lab, Greenbelt, MD 20771 USA
关键词
D O I
10.1029/2004JD005293
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] Computation of components of shortwave ( SW) or solar irradiance in the surface-atmospheric system forms the basis of intercomparison between 16 radiative transfer models of varying spectral resolution ranging from line-by-line models to broadband and general circulation models. In order of increasing complexity the components are: direct solar irradiance at the surface, diffuse irradiance at the surface, diffuse upward flux at the surface, and diffuse upward flux at the top of the atmosphere. These components allow computation of the atmospheric absorptance. Four cases are considered from pure molecular atmospheres to atmospheres with aerosols and atmosphere with a simple uniform cloud. The molecular and aerosol cases allow comparison of aerosol forcing calculation among models. A cloud-free case with measured atmospheric and aerosol properties and measured shortwave radiation components provides an absolute basis for evaluating the models. For the aerosol-free and cloud-free dry atmospheres, models agree to within 1% ( root mean square deviation as a percentage of mean) in broadband direct solar irradiance at surface; the agreement is relatively poor at 5% for a humid atmosphere. A comparison of atmospheric absorptance, computed from components of SW radiation, shows that agreement among models is understandably much worse at 3% and 10% for dry and humid atmospheres, respectively. Inclusion of aerosols generally makes the agreement among models worse than when no aerosols are present, with some exceptions. Modeled diffuse surface irradiance is higher than measurements for all models for the same model inputs. Inclusion of an optically thick low-cloud in a tropical atmosphere, a stringent test for multiple scattering calculations, produces, in general, better agreement among models for a low solar zenith angle ( SZA = 30 degrees) than for a high SZA ( 75 degrees). All models show about a 30% increase in broadband absorptance for 30 degrees SZA relative to the clear-sky case and almost no enhancement in absorptance for a higher SZA of 75 degrees, possibly due to water vapor line saturation in the atmosphere above the cloud.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 72 条
[1]   Quantifying the magnitude of anomalous solar absorption [J].
Ackerman, TP ;
Flynn, DM ;
Marchand, RT .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 109 (D9)
[2]  
Anderson G.P., 1986, AFGL ATMOSPHERIC CON
[3]  
Barker HW, 2003, J CLIMATE, V16, P2676, DOI 10.1175/1520-0442(2003)016<2676:ADASRT>2.0.CO
[4]  
2
[5]   MODTRAN cloud and multiple scattering upgrades with application to AVIRIS [J].
Berk, A ;
Bernstein, LS ;
Anderson, GP ;
Acharya, PK ;
Robertson, DC ;
Chetwynd, JH ;
Adler-Golden, SM .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :367-375
[6]   Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols [J].
Boucher, O ;
Schwartz, SE ;
Ackerman, TP ;
Anderson, TL ;
Bergstrom, B ;
Bonnel, B ;
Chylek, P ;
Dahlback, A ;
Fouquart, Y ;
Fu, Q ;
Halthore, RN ;
Haywood, JM ;
Iversen, T ;
Kato, S ;
Kinne, S ;
Kirkevag, A ;
Knapp, KR ;
Lacis, A ;
Laszlo, I ;
Mishchenko, MI ;
Nemesure, S ;
Ramaswamy, V ;
Roberts, DL ;
Russell, P ;
Schlesinger, ME ;
Stephens, GL ;
Wagener, R ;
Wang, M ;
Wong, J ;
Yang, F .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D14) :16979-16998
[7]  
Chandrasekhar S., 1960, RAD TRANSFER
[8]  
Chang FL, 2000, J CLIMATE, V13, P3842, DOI 10.1175/1520-0442(2000)013<3842:ETRBCA>2.0.CO
[9]  
2
[10]  
CHANG FL, 1997, THESIS OREGON STATE