Insulin regulation of fatty acid synthase gene transcription: Roles of USF and SREBP-1c

被引:100
作者
Griffin, MJ [1 ]
Sul, HS [1 ]
机构
[1] Univ Calif Berkeley, Dept Nutr Sci & Toxicol, Berkeley, CA 94720 USA
关键词
fatty acid synthase; insulin; transcription; USF; SREBP-1; lipogenesis; transgenic;
D O I
10.1080/15216540400022474
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transcriptional regulation of lipogenesis is a highly coordinated process occurring in concert with transcriptional as well as post-transcriptional regulation of enzymes involved in glycolysis and gluconeogenesis. Fatty acid synthase (FAS) plays a central role in de novo lipogenesis by converting acetyl-CoA and malonyl-CoA into the final end product, palmitate, which can subsequently be esterified into triacylglycerols and then stored in adipose tissue. Ultimately, this helps to prevent buildup of excess glucose in other types of cells and tissues, the effects of which can be readily observed in the pathophysiology of disease states such as Type-II diabetes and obesity. Thus, elucidating the transcriptional mechanisms of lipogenic enzyme genes is important for understanding the normal regulation of lipogenesis and ultimately the dysregulation that may occur in certain metabolic disease. In this review, we discuss advances in our understanding of the regulation of lipogenesis at the genetic level, with a special emphasis on the common cis- and transacting factors involved in regulation of FAS. Two transcription factors, Upstream Stimulatory Factor (USF) and Sterol Regulatory Element Binding Protein-1c (SREBP-1c), seem to play a dominant and possibly cooperative role in regulating FAS transcription.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 38 条
[1]   Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes [J].
Azzout-Marniche, D ;
Bécard, D ;
Guichard, C ;
Foretz, M ;
Ferré, P ;
Foufelle, F .
BIOCHEMICAL JOURNAL, 2000, 350 :389-393
[2]   Adenovirus-mediated overexpression of sterol regulatory element binding protein-1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice [J].
Bécard, D ;
Hainault, I ;
Azzout-Marniche, D ;
Bertry-Coussot, L ;
Ferré, P ;
Foufelle, F .
DIABETES, 2001, 50 (11) :2425-2430
[3]  
BRIGGS MR, 1993, J BIOL CHEM, V268, P14490
[4]  
BURTON DN, 1969, J BIOL CHEM, V244, P4510
[5]   AN RNA POLYMERASE-II TRANSCRIPTION FACTOR BINDS TO AN UPSTREAM ELEMENT IN THE ADENOVIRUS MAJOR LATE PROMOTER [J].
CARTHEW, RW ;
CHODOSH, LA ;
SHARP, PA .
CELL, 1985, 43 (02) :439-448
[6]   Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver [J].
Casado, M ;
Vallet, VS ;
Kahn, A ;
Vaulont, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :2009-2013
[7]   Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes [J].
Foretz, M ;
Guichard, C ;
Ferré, P ;
Foufelle, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12737-12742
[8]   ESTABLISHED PRE-ADIPOSE CELL LINE AND ITS DIFFERENTIATION IN CULTURE [J].
GREEN, H ;
MEUTH, M .
CELL, 1974, 3 (02) :127-133
[9]   Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice [J].
Horton, JD ;
Bashmakov, Y ;
Shimomura, I ;
Shimano, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :5987-5992
[10]   Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1 [J].
Kim, JB ;
Sarraf, P ;
Wright, M ;
Yao, KM ;
Mueller, E ;
Solanes, G ;
Lowell, BB ;
Spiegelman, BM .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (01) :1-9