The Laplacian spectral radius of a graph under perturbation

被引:48
作者
Guo, Ji-Ming [1 ]
机构
[1] China Univ Petroleum, Dept Appl Math, Dongying 257061, Peoples R China
关键词
Laplacian spectral radius; eigenvector; characteristic polynomial;
D O I
10.1016/j.camwa.2007.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate how the Laplacian spectral radius changes when one graph is transferred to another graph obtained from the original graph by adding some edges, or subdivision, or removing some edges from one vertex to another. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:709 / 720
页数:12
相关论文
共 25 条
[1]  
[Anonymous], IMA VOLUMES MATH ITS
[2]  
[Anonymous], LINEAR ALGEBRA APPL
[3]   AN UPPER BOUND ON THE DIAMETER OF A GRAPH FROM EIGENVALUES ASSOCIATED WITH ITS LAPLACIAN [J].
CHUNG, FRK ;
FABER, V ;
MANTEUFFEL, TA .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (03) :443-457
[4]  
Cvetkovic D., 2005, GRAPH THEORY COMBINA, V131, P85
[5]  
CVETKOVIC DM, 1997, EIGENSPACES GRAPHS, P56
[6]   LAPLACIAN EIGENVALUES AND THE MAXIMUM CUT PROBLEM [J].
DELORME, C ;
POLJAK, S .
MATHEMATICAL PROGRAMMING, 1993, 62 (03) :557-574
[7]   COMBINATORIAL PROPERTIES AND THE COMPLEXITY OF A MAX-CUT APPROXIMATION [J].
DELORME, C ;
POLJAK, S .
EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (04) :313-333
[8]   THE PERFORMANCE OF AN EIGENVALUE BOUND ON THE MAX-CUT PROBLEM IN SOME CLASSES OF GRAPHS [J].
DELORME, C ;
POLJAK, S .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :145-156
[9]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[10]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238