Structure, evolution, and expression of the two invertase gene families of rice

被引:195
作者
Ji, XM
Van den Ende, W
Van Laere, A
Cheng, SH
Bennett, J
机构
[1] Int Rice Res Inst, Plant Breeding Genet & Biochem Div, Manila, Philippines
[2] Chinese Natl Rice Res Inst, Hangzhou 310006, Peoples R China
[3] Katholieke Univ Leuven, Inst Bot & Microbiol, Lab Mol Plant Pathol, B-3001 Louvain, Belgium
关键词
cell wall; vacuole; cytosol; mitochondrion; chloroplast; Oryza sativa; Arabidopsis thaliana; subcellular targeting; intron loss;
D O I
10.1007/s00239-004-0242-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Invertases catalyze the irreversible hydrolysis of sucrose to glucose and fructose. Plants contain two unrelated families of these enzymes: acid forms that derive from periplasmic invertases of eubacteria and are found in cell wall and vacuole, and neutral/alkaline forms evolved from the cytosolic invertases of cyanobacteria. Genomes of rice (Oryza sativa) and thale cress (Arrabidopsis thaliana) contain multiple genes encoding these two families. Here for rice we identify the member genes of a cell-wall group (designated OsCIN1-9), a vacuolar group (OsVIN1-2), and two ancient neutral/alkaline groups: alpha (OsNIN1-4) and beta (OsNIN5-8). In Arabidopsis these groups contain six, two, four and five members, respectively. It is believed that the vacuolar group evolved from the cell-wall group. We provide evidence that the N-terminal signal peptide that directs cell-wall invertases co-translationally into the endoplasmic reticulum for secretion was replaced in the vacuolar group by a sequence similar to the complex N-terminal motif that targets alkaline phosphatase post-translationally to the vacuolar membrane of yeast. Since the last common ancestor of Arabidopsis and rice, the two invertase families evolved equally rapidly via gene duplication and gene loss, but the acid invertase family underwent similar to 10 events of intron loss compared with a single event of intron gain in the neutral/alkaline invertase family. Transcripts were detected for all rice invertase genes except OsCIN9. The acid invertase genes showed greater spatial and temporal diversity of expression than the neutral/alkaline genes.
引用
收藏
页码:615 / 634
页数:20
相关论文
共 74 条
[1]   The three-dimensional structure of invertase (β-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases [J].
Alberto, F ;
Bignon, C ;
Sulzenbacher, G ;
Henrissat, B ;
Czjzek, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (18) :18903-18910
[2]   A handful of intron-containing genes produces the lion's share of yeast mRNA [J].
Ares, M ;
Grate, L ;
Pauling, MH .
RNA, 1999, 5 (09) :1138-1139
[3]  
Avigad G, 1997, Plant biochemistry, P143, DOI DOI 10.1016/B978-012214674-9/50005-9
[4]   Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein γTIP [J].
Balk, PA ;
de Boer, AD .
PLANTA, 1999, 209 (03) :346-354
[5]   Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants [J].
Baroja-Fernández, E ;
Muñoz, FJ ;
Saikusa, T ;
Rodríguez-López, M ;
Akazawa, T ;
Pozueta-Romero, J .
PLANT AND CELL PHYSIOLOGY, 2003, 44 (05) :500-509
[6]  
Bassham DC, 1997, ADV BOT RES, V25, P43, DOI 10.1016/S0065-2296(08)60147-0
[7]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[8]   Exon skipping induced by cold stress in a potato invertase gene transcript [J].
Bournay, AS ;
Hedley, PE ;
Maddison, A ;
Waugh, R ;
Machray, GC .
NUCLEIC ACIDS RESEARCH, 1996, 24 (12) :2347-2351
[9]  
Bowers JE, 2003, GENETICS, V165, P367
[10]  
BRINKS S, 1994, J BIOL CHEM, V269, P16478