A hydrotreating study was conducted in a bench-scale hydroprocessing reactor, over a wide range of operating conditions of industrial interest, to look in detail at hydrodesulfurization (HDS), hydrodenitrogenation (HDN), and aromatics hydrogenation, and the interactions between these reactions. This article focuses on preliminary HDS results and some general findings. The feed used was a fluid catalytic cracking (FCC), light cycle oil (LCO) and the catalyst was a commercial NiMo/Al2O3 hydrotreating catalyst. The HDS results were analyzed by focusing on individual dibenzothiophenic sulfur species in the feedstock and products. Some of those species were positively identified while others were grouped into classes. It was observed that above 385degreesC, the assumption of irreversible pseudo-first-order reaction is not applicable for both total sulfur removal and sulfur removal of individual dibenzothiophenic species. All HDS reactions involving dibenzothiophenic structures reach a point where they are affected by hydrogenation/dehydrogenation equilibrium. Among all the 14 difficult-to-remove sulfur species identified in this work 4-methyldibenzothiophene (4-MDBT) has the highest HDS reactivity, while 4,6-dimethyldibenzothiophene (4,6-DMDBT) has the lowest HDS reactivity attributable to steric hindrance by methyl substitutes. at 4 and 6 positions. It was also found that H2S significantly reduces the reaction rates of HDS. However, this effect reaches a plateau as H2S concentration in the gas phase increases. At low reactor temperature, HDS rates linearly increase with the increase in hydrogen partial pressure. At high temperature it reaches the limit of complete conversion.