tRNA recognition of tRNA-guanine transglycosylase from a hyperthermophilic archaeon, Pyrococcus horikoshii

被引:25
作者
Watanabe, M
Nameki, N
Matsuo-Takasaki, M
Nishimura, S
Okada, N
机构
[1] Tokyo Inst Technol, Grad Sch Biosci & Biotechnol, Dept Biol Sci, Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] Banyu Tsukuba Res Inst Merck, Tsukuba, Ibaraki 3002611, Japan
关键词
D O I
10.1074/jbc.M005043200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the biosynthesis of archaeosine, archaeal tRNA-guanine transglycosylase (TGT) catalyzes the replacement of guanine at position 15 in the D loop of most tRNAs by a free precursor base. We examined the tRNA recognition of TGT from a hyperthermophilic archaeon, Pyrococcus horikoshii. Mutational studies using variant tRNA(Val) transcripts revealed that both guanine and its location (position 15) were strictly recognized by TGT without any other sequence-specific requirements. It appeared that neither the global L-shaped structure of a tRNA nor the local conformation of the D loop contributed to recognition by TGT, A minihelix composed of the acceptor stem and D arm of tRNA(Val), designed as a potential minimal substrate, failed to serve as a substrate for TGT, Only a minihelix with mismatched nucleotides at the junction between the two domains served as a good substrate, suggesting that mismatched nucleotides in the helix provide the specific information that allows TGT to recognize the guanine in the D loop. Our findings indicate that the tRNA recognition requirements of P. horikoshii TGT are sufficiently limited and specific to allow the enzyme to recognize efficiently any tRNA species whose structure is not fully stabilized in an extremely high temperature environment.
引用
收藏
页码:2387 / 2394
页数:8
相关论文
共 43 条
[1]   Thermostable aminopeptidase from Pyrococcus horikoshii [J].
Ando, S ;
Ishikawa, K ;
Ishida, H ;
Kawarabayasi, Y ;
Kikuchi, H ;
Kosugi, Y .
FEBS LETTERS, 1999, 447 (01) :25-28
[2]   Hypermodification of tRNA in thermophilic archaea -: Cloning, overexpression, and characterization of tRNA-guanine transglycosylase from Methanococcus jannaschii [J].
Bai, Y ;
Fox, DT ;
Lacy, JA ;
Van Lanen, SG ;
Iwata-Reuyl, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28731-28738
[3]   SITE-DIRECTED INVITRO REPLACEMENT OF NUCLEOSIDES IN THE ANTICODON LOOP OF TRANSFER-RNA - APPLICATION TO THE STUDY OF STRUCTURAL REQUIREMENTS FOR QUEUINE INSERTASE ACTIVITY [J].
CARBON, P ;
HAUMONT, E ;
FOURNIER, M ;
DEHENAU, S ;
GROSJEAN, H .
EMBO JOURNAL, 1983, 2 (07) :1093-1097
[4]   Transfer RNA modification enzymes from Pyrococcus furiosus:: detection of the enzymatic activities in vitro [J].
Constantinesco, F ;
Motorin, Y ;
Grosjean, H .
NUCLEIC ACIDS RESEARCH, 1999, 27 (05) :1308-1315
[5]   MOLECULAR MECHANISM OF THERMAL UNFOLDING OF ESCHERICHIA-COLI FORMYLMETHIONINE TRANSFER-RNA [J].
CROTHERS, DM ;
COLE, PE ;
HILBERS, CW ;
SHULMAN, RG .
JOURNAL OF MOLECULAR BIOLOGY, 1974, 87 (01) :63-&
[6]   TRANSFER-RNA-GUANINE TRANSGLYCOSYLASE FROM ESCHERICHIA-COLI - MINIMAL TRANSFER-RNA STRUCTURE AND SEQUENCE REQUIREMENTS FOR RECOGNITION [J].
CURNOW, AW ;
GARCIA, GA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17264-17267
[7]   VARIATIONS IN TRANSFER-RNA MODIFICATIONS, PARTICULARLY OF THEIR QUEUINE CONTENT IN HIGHER EUKARYOTES - ITS RELATION TO MALIGNANCY GRADING [J].
DIRHEIMER, G ;
BARANOWSKI, W ;
KEITH, G .
BIOCHIMIE, 1995, 77 (1-2) :99-103
[8]  
Dirheimer G., 1995, P93
[9]   POSTTRANSCRIPTIONAL MODIFICATION OF TRANSFER-RNA IN THERMOPHILIC ARCHAEA (ARCHAEBACTERIA) [J].
EDMONDS, CG ;
CRAIN, PF ;
GUPTA, R ;
HASHIZUME, T ;
HOCART, CH ;
KOWALAK, JA ;
POMERANTZ, SC ;
STETTER, KO ;
MCCLOSKEY, JA .
JOURNAL OF BACTERIOLOGY, 1991, 173 (10) :3138-3148
[10]   NEW FUNCTION OF VITAMIN-B12 - COBAMIDE-DEPENDENT REDUCTION OF EPOXYQUEUOSINE TO QUEUOSINE IN TRANSFER-RNAS OF ESCHERICHIA-COLI AND SALMONELLA-TYPHIMURIUM [J].
FREY, B ;
MCCLOSKEY, J ;
KERSTEN, W ;
KERSTEN, H .
JOURNAL OF BACTERIOLOGY, 1988, 170 (05) :2078-2082