Orbital magnetization and Chern number in a supercell framework: Single k-point formula

被引:26
作者
Ceresoli, Davide
Resta, Raffaele
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Ist Nazl Fis Nucl, Democritos Natl Simulat Ctr, CNR, I-34014 Trieste, Italy
[3] Univ Trieste, Dipartimento Fis Teor, I-34014 Trieste, Italy
关键词
D O I
10.1103/PhysRevB.76.012405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The key formula for computing the orbital magnetization of a crystalline system has been recently found [D. Ceresoli , Phys. Rev. B 74, 024408 (2006)]: it is given in terms of a Brillouin-zone integral, which is discretized on a reciprocal-space mesh for numerical implementation. We find here the single k-point limit, useful for large enough supercells, and particularly in the framework of Car-Parrinello simulations for noncrystalline systems. We validate our formula on the test case of a crystalline system, where the supercell is chosen as a large multiple of the elementary cell. We also show that-somewhat counterintuitively-even the Chern number (in two dimensions) can be evaluated using a single Hamiltonian diagonalization.
引用
收藏
页数:4
相关论文
共 24 条
[1]   UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY [J].
CAR, R ;
PARRINELLO, M .
PHYSICAL REVIEW LETTERS, 1985, 55 (22) :2471-2474
[2]   Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals [J].
Ceresoli, Davide ;
Thonhauser, T. ;
Vanderbilt, David ;
Resta, R. .
PHYSICAL REVIEW B, 2006, 74 (02)
[4]   THEORY OF POLARIZATION OF CRYSTALLINE SOLIDS [J].
KINGSMITH, RD ;
VANDERBILT, D .
PHYSICAL REVIEW B, 1993, 47 (03) :1651-1654
[5]  
Lundqvist S., 1983, THEORY INHOMOGENEOUS
[6]   Ab initio theory of NMR chemical shifts in solids and liquids [J].
Mauri, F ;
Pfrommer, BG ;
Louie, SG .
PHYSICAL REVIEW LETTERS, 1996, 77 (26) :5300-5303
[7]   Magnetic susceptibility of insulators from first principles [J].
Mauri, F ;
Louie, SG .
PHYSICAL REVIEW LETTERS, 1996, 76 (22) :4246-4249
[8]   First-principles theory of the EPR g tensor in solids:: Defects in quartz -: art. no. 086403 [J].
Pickard, CJ ;
Mauri, F .
PHYSICAL REVIEW LETTERS, 2002, 88 (08) :4
[9]   Orbital magnetization in extended systems [J].
Resta, R ;
Ceresoli, D ;
Thonhauser, T ;
Vanderbilt, D .
CHEMPHYSCHEM, 2005, 6 (09) :1815-1819
[10]   Quantum-mechanical position operator in extended systems [J].
Resta, R .
PHYSICAL REVIEW LETTERS, 1998, 80 (09) :1800-1803