Relative sensitivities of plasma lecithin:cholesterol acyltransferase, platelet-activating factor acetylhydrolase, and paraoxonase to in vitro gas-phase cigarette smoke exposure

被引:10
作者
Bielicki, JK [1 ]
Knoff, LJ [1 ]
Tribble, DL [1 ]
Forte, TM [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Donner Lab, Berkeley, CA 94720 USA
关键词
atherogenic properties; cigarette smoke; LCAT; PAF-AH; PON;
D O I
10.1016/S0021-9150(00)00539-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In order to identify potential atherogenic properties of gas-phase cigarette smoke, we utilized an in vitro exposure model to determine whether the activities of several putative anti-atherogenic enzymes associated with plasma lipoproteins were compromised. Exposure of heparinized human plasma to gas-phase cigarette smoke produced a dose-dependent reduction in the activity of platelet-activating factor acetylhydrolase (PAF-AH). Reductions of nearly 50% in PAF-AH activity were observed following exposure to gas-phase smoke from four cigarettes over an 8-h period. During this time of exposure, lecithin:cholesterol acyltransferase (LCAT) was rendered almost completely inactive (> 80%). In contrast, paraoxonase was totally unaffected by cigarette smoke. Supplementation of plasma with 1 mM reduced glutathione was found to protect both PAF-AH and LCAT from cigarette smoke, suggesting that cysteine modifications may have contributed to the inhibition of these two enzymes. To evaluate this possibility, we blocked the free cysteine residues of these enzymes with the reversible thiol-modifying reagent dithiobisnitrobenzoic acid (DTNB). Reversal of the DTNB-cysteine adducts following cigarette smoke exposures revealed that LCAT, but not PAF-AH, was protected. Moreover, high doses (1.0-10 mM) of acrolein and 4-hydroxynonenal, reactive aldehydic species associated with cigarette smoke, completely inhibited plasma LCAT activity, whereas PAF-AH was resistant to such exposures. Taken together, these results indicate a divergence regarding the underlying mechanism of PAF-AH and LCAT inhibition upon exposure to gas-phase cigarette smoke. While LCAT was sensitive to exposure to volatile aldehydic products involving, in part, cysteine and/or active site modifications, the enzyme PAF-AH exhibited an apparent resistance. The latter suggests that the active site of PAF-AH is in a microenvironment that lacks free cysteine residues and/or is shielded from volatile aldehydic combustion products. Based on these results, we propose that cigarette smoke may contribute to atherogenesis by inhibiting the activities of plasma PAF-AH and LCAT, but the nature of this inhibition differs for the enzymes. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 32 条
[1]   Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities - Selective action of human paraoxonase allozymes Q and R [J].
Aviram, M ;
Billecke, S ;
Sorenson, R ;
Bisgaier, C ;
Newton, R ;
Rosenblat, M ;
Erogul, J ;
Hsu, C ;
Dunlop, C ;
La Du, B .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1998, 18 (10) :1617-1624
[2]   Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions - A possible peroxidative role for paraoxonase [J].
Aviram, M ;
Rosenblat, M ;
Bisgaier, CL ;
Newton, RS ;
Primo-Parmo, SL ;
La Du, BN .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (08) :1581-1590
[3]  
Bielicki JK, 1999, J LIPID RES, V40, P948
[4]   GAS-PHASE CIGARETTE-SMOKE INHIBITS PLASMA LECITHIN-CHOLESTEROL ACYLTRANSFERASE ACTIVITY BY MODIFICATION OF THE ENZYMES FREE THIOLS [J].
BIELICKI, JK ;
FORTE, TM ;
MCCALL, MR .
BIOCHIMICA ET BIOPHYSICA ACTA-LIPIDS AND LIPID METABOLISM, 1995, 1258 (01) :35-40
[5]  
BIELICKI JK, 1995, J LIPID RES, V36, P322
[6]  
BLIGH EG, 1959, CAN J BIOCHEM PHYSIO, V37, P912
[7]  
CHEN CH, 1982, J LIPID RES, V23, P680
[8]   CHANGES IN PLASMA HIGH-DENSITY-LIPOPROTEIN CHOLESTEROL AFTER CHANGES IN CIGARETTE USE [J].
FORTMANN, SP ;
HASKELL, WL ;
WILLIAMS, PT .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1986, 124 (04) :706-710
[9]   GAS-PHASE OXIDANTS OF CIGARETTE-SMOKE INDUCE LIPID-PEROXIDATION AND CHANGES IN LIPOPROTEIN PROPERTIES IN HUMAN BLOOD-PLASMA - PROTECTIVE EFFECTS OF ASCORBIC-ACID [J].
FREI, B ;
FORTE, TM ;
AMES, BN ;
CROSS, CE .
BIOCHEMICAL JOURNAL, 1991, 277 :133-138
[10]  
Glomset J. A., 1995, METABOLIC MOL BASES, P1933