Application of 14C analyses to source apportionment of carbonaceous PM2.5 in the UK

被引:67
作者
Heal, Mathew R. [1 ]
Naysmith, Philip [2 ]
Cook, Gordon T. [2 ]
Xu, Sheng [2 ]
Duran, Teresa Raventos [3 ]
Harrison, Roy M. [3 ]
机构
[1] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Scottish Univ Environm Res Ctr, E Kilbride G75 0QF, Lanark, Scotland
[3] Univ Birmingham, Sch Geog Earth & Environm Sci, Div Environm Hlth & Risk Management, Birmingham B15 2TT, W Midlands, England
基金
英国自然环境研究理事会;
关键词
PM2.5; Particulate mater; Carbon-14; BVOC; SOA; Source apportionment; TORCH; 2003; CAMPAIGN; PARTICULATE MATTER; REGIONAL-SCALE; CHEMICAL-COMPOSITION; ELEMENTAL CARBON; ORGANIC AEROSOLS; MASS CLOSURE; SOUTHERN UK; SECONDARY; URBAN;
D O I
10.1016/j.atmosenv.2011.02.029
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Determination of the radiocarbon (C-14) content of airborne particulate matter yields insight into the proportion of the carbonaceous material derived from fossil and contemporary carbon sources. Daily samples of PM2.5 were collected by high-volume sampler at an urban background site in Birmingham, UK, and the fraction of C-14 in both the total carbon, and in the organic and elemental carbon fractions. determined by two-stage combustion to CO2, graphitisation and quantification by accelerator mass spectrometry. OC and EC content was also determined by Sunset Analyzer. The mean fraction contemporary TC in the PM2.5 samples was 0.50 (range 0.27-0.66, n = 26). There was no seasonality to the data, but there was a positive trend between fraction contemporary TC and magnitude of SOC/TC ratio and for the high values of these two parameters to be associated with air-mass back trajectories arriving in Birmingham from over land. Using a five-compartment mass balance model on fraction contemporary carbon in OC and EC, the following average source apportionment for the TC in these PM2.5 samples was derived: 27% fossil EC: 20% fossil OC; 2% biomass EC; 10% biomass OC: and 41% biogenic OC. The latter category will comprise, in addition to BVOC-derived SOC, other non-combustion contemporary carbon sources such as biological particles, vegetative detritus, humic material and tyre wear. The proportion of total PM2.5 at this location estimated to derive from BVOC-derived secondary organic aerosol was 9-29%. The findings from this work are consistent with those from elsewhere in Europe and support the conclusion of a significant and ubiquitous contribution from non-fossil biogenic sources to the carbon in terrestrial aerosol. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2341 / 2348
页数:8
相关论文
共 39 条
[1]   O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry [J].
Aiken, Allison C. ;
Decarlo, Peter F. ;
Kroll, Jesse H. ;
Worsnop, Douglas R. ;
Huffman, J. Alex ;
Docherty, Kenneth S. ;
Ulbrich, Ingrid M. ;
Mohr, Claudia ;
Kimmel, Joel R. ;
Sueper, Donna ;
Sun, Yele ;
Zhang, Qi ;
Trimborn, Achim ;
Northway, Megan ;
Ziemann, Paul J. ;
Canagaratna, Manjula R. ;
Onasch, Timothy B. ;
Alfarra, M. Rami ;
Prevot, Andre S. H. ;
Dommen, Josef ;
Duplissy, Jonathan ;
Metzger, Axel ;
Baltensperger, Urs ;
Jimenez, Jose L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4478-4485
[2]  
[Anonymous], 2007, CERT AN STAND REF MA
[3]  
*AQEG, 2005, 2 AQEG UK DEP EVN FO
[4]   Relative contributions of fossil and contemporary carbon sources to PM 2.5 aerosols at nine Interagency Monitoring for Protection of Visual Environments (IMPROVE) network sites [J].
Bench, Graham ;
Fallon, Stewart ;
Schichtel, Bret ;
Malm, William ;
McDade, Charles .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
[5]   To What Extent Can Biogenic SOA be Controlled? [J].
Carlton, Annmarie G. ;
Pinder, Robert W. ;
Bhave, Prakash V. ;
Pouliot, George A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (09) :3376-3380
[6]   Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations [J].
Castro, LM ;
Pio, CA ;
Harrison, RM ;
Smith, DJT .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (17) :2771-2781
[7]   Observations of OM/OC and specific attenuation coefficients (SAC) in ambient fine PM at a rural site in central Ontario, Canada [J].
Chan, T. W. ;
Huang, L. ;
Leaitch, W. R. ;
Sharma, S. ;
Brook, J. R. ;
Slowik, J. G. ;
Abbatt, J. P. D. ;
Brickell, P. C. ;
Liggio, J. ;
Li, S. -M. ;
Moosmueller, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (05) :2393-2411
[8]   Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols [J].
Chow, JC ;
Watson, JG ;
Chen, LWA ;
Arnott, WP ;
Moosmüller, H ;
Fung, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (16) :4414-4422
[9]   Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study [J].
Chow, JC ;
Watson, JG ;
Kuhns, H ;
Etyemezian, V ;
Lowenthal, DH ;
Crow, D ;
Kohl, SD ;
Engelbrecht, JP ;
Green, MC .
CHEMOSPHERE, 2004, 54 (02) :185-208
[10]   A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a [J].
Currie, LA ;
Benner, BA ;
Kessler, JD ;
Klinedinst, DB ;
Klouda, GA ;
Marolf, JV ;
Slater, JF ;
Wise, SA ;
Cachier, H ;
Cary, R ;
Chow, JC ;
Watson, J ;
Druffel, ERM ;
Masiello, CA ;
Eglinton, TI ;
Pearson, A ;
Reddy, CM ;
Gustafsson, Ö ;
Quinn, JG ;
Hartmann, PC ;
Hedges, JI ;
Prentice, KM ;
Kirchstetter, TW ;
Novakov, T ;
Puxbaum, H ;
Schmid, H .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2002, 107 (03) :279-298