Face 2-colourable triangular embeddings of complete graphs

被引:28
作者
Grannell, MJ [1 ]
Griggs, TS
Siran, J
机构
[1] Univ Cent Lancashire, Dept Math & Stat, Preston PR1 2HE, Lancs, England
[2] Slovak Univ Technol Bratislava, Dept Math, SvF, Bratislava 81368, Slovakia
关键词
D O I
10.1006/jctb.1998.1826
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A face 2-colourable triangulation of an orientable surface by a complete graph K-n exists if and only if n = 3 or 7 (mod 12). The existence of such triangulations follows from current graph constructions used in the proof of the Heawood conjecture. In this paper we give an alternative construction for half of the residue class n=7 (mod 12) which lifts a face 2-colourable triangulation by K-m to one by K3m-2. A nonorientable version of this result is discussed as well which enables us to produce nonisomorphic nonorientable triangular embeddings of K-n for half of the residue class n = 1 (mod 6). We also note the existence of nonisomorphic orientable triangular embeddings of K-n for n = 7 (mod 12) and n not equal 7. (C) 1998 Academic Press.
引用
收藏
页码:8 / 19
页数:12
相关论文
共 11 条
[1]   TWOFOLD TRIPLE SYSTEMS AND GRAPH IMBEDDINGS [J].
ALPERT, SR .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (01) :101-107
[2]  
Anderson I., 1982, AEQUATIONES MATH, V24, P230
[3]  
[Anonymous], 1974, MAP COLOR THEOREM, DOI DOI 10.1007/978-3-642-65759-7
[4]   GENUS OF STRONG TENSOR PRODUCTS OF GRAPHS [J].
GARMAN, BL ;
RINGEISEN, RD ;
WHITE, AT .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (03) :523-532
[5]  
GRANNELL MJ, IN PRESS J COMBIN DE
[6]  
GROSS JL, 1987, TOPOLIGICAL GRAPH TH
[7]   3 NONISOMORPHIC TRIANGULATIONS OF AN ORIENTABLE SURFACE WITH THE SAME COMPLETE GRAPH [J].
LAWRENCENKO, S ;
NEGAMI, S ;
WHITE, AT .
DISCRETE MATHEMATICS, 1994, 135 (1-3) :367-369
[8]  
Street A. P., 1977, COMBINATORIAL THEORY
[9]  
WHITE AT, 1995, P LOND MATH SOC, V70, P33
[10]   BLOCK DESIGNS AND GRAPH IMBEDDINGS [J].
WHITE, AT .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (02) :166-183