Entanglement entropy in the Lipkin-Meshkov-Glick model -: art. no. 064101

被引:181
作者
Latorre, JI [1 ]
Orús, R
Rico, E
Vidal, J
机构
[1] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[2] Univ Paris 06, CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75252 Paris, France
来源
PHYSICAL REVIEW A | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevA.71.064101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the entanglement entropy in the Lipkin-Meshkov-Glick model, which describes mutually interacting spin 1/2 embedded in a magnetic field. This entropy displays a singularity at the critical point that we study as a function of the interaction anisotropy, the magnetic field, and the system size. Results emerging from our analysis are surprisingly similar to those found for the one- dimensional XY chain.
引用
收藏
页数:4
相关论文
共 35 条
[1]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[2]   Quantum superposition states of Bose-Einstein condensates [J].
Cirac, JI ;
Lewenstein, M ;
Molmer, K ;
Zoller, P .
PHYSICAL REVIEW A, 1998, 57 (02) :1208-1218
[3]   COHERENCE IN SPONTANEOUS RADIATION PROCESSES [J].
DICKE, RH .
PHYSICAL REVIEW, 1954, 93 (01) :99-110
[4]   Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW B, 2005, 71 (22)
[5]   Finite-size scaling exponents and entanglement in the two-level BCS model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW A, 2005, 71 (06)
[6]   Finite-size scaling exponents of the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[7]  
GINSPARG P, 1988, P LES HOUCH SUMM SCH
[8]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .3. DIAGRAM SUMMATIONS [J].
GLICK, AJ ;
LIPKIN, HJ ;
MESHKOV, N .
NUCLEAR PHYSICS, 1965, 62 (02) :211-&
[9]   Ground state entanglement and geometric entropy in the Kitaev model [J].
Hamma, A ;
Ionicioiu, R ;
Zanardi, P .
PHYSICS LETTERS A, 2005, 337 (1-2) :22-28
[10]   GEOMETRIC AND RENORMALIZED ENTROPY IN CONFORMAL FIELD-THEORY [J].
HOLZHEY, C ;
LARSEN, F ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1994, 424 (03) :443-467