An interior proximal algorithm and the exponential multiplier method for semidefinite programming

被引:21
作者
Doljansky, M [1 ]
Teboulle, M [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Ramat Aviv, Israel
关键词
semidefinite optimization; proximal-like methods; exponential penalty; augmented Lagrangian/multiplier methods;
D O I
10.1137/S1052623496309405
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
introduce an interior proximal algorithm for semidefinite optimization problems and establish its convergence properties. We also study the corresponding dual algorithm leading to an exponential multiplier method for semidefinite programs. Potential applications and extensions are also discussed.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 20 条
[1]   INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION [J].
ALIZADEH, F .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) :13-51
[2]   An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities [J].
Auslender, A ;
Haddou, M .
MATHEMATICAL PROGRAMMING, 1995, 71 (01) :77-100
[3]  
Bauschke H. H., 1997, J CONVEX ANAL, V4, P27
[4]   Penalty/barrier multiplier methods for convex programming problems [J].
BenTal, A ;
Zibulevsky, M .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :347-366
[5]  
BENTAL A, 1992, 992 TECHN OPT LAB
[6]  
Bertsekas D., 2019, Reinforcement Learning and Optimal Control
[7]  
BREITFELD MG, 1993, 1793 RUTG U
[8]   CONVERGENCE ANALYSIS OF A PROXIMAL-LIKE MINIMIZATION ALGORITHM USING BREGMAN FUNCTIONS [J].
Chen, Gong ;
Teboulle, Marc .
SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (03) :538-543
[10]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022