A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles

被引:4465
作者
Suntivich, Jin [1 ,2 ]
May, Kevin J. [2 ,3 ]
Gasteiger, Hubert A. [2 ,3 ]
Goodenough, John B. [4 ]
Shao-Horn, Yang [1 ,2 ,3 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
ROTATING-DISK ELECTRODE; REDUCTION ACTIVITY; ALKALINE-SOLUTIONS; FUEL-CELLS; ELECTROCATALYSIS; TEMPERATURE; BATTERIES; SURFACES; PLANET; WATER;
D O I
10.1126/science.1212858
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e(g) symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e(g) occupancy close to unity, with high covalency of transition metal-oxygen bonds.
引用
收藏
页码:1383 / 1385
页数:3
相关论文
共 28 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   The Electronic Structure of the Vanadyl Ion [J].
Ballhausen, C. J. ;
Gray, Harry B. .
INORGANIC CHEMISTRY, 1962, 1 (01) :111-122
[3]   Electronic design criteria for O-O bond formation via metal-oxo complexes [J].
Betley, Theodore A. ;
Wu, Qin ;
Van Voorhis, Troy ;
Nocera, Daniel G. .
INORGANIC CHEMISTRY, 2008, 47 (06) :1849-1861
[4]   THE ELECTROCATALYSIS OF OXYGEN EVOLUTION ON PEROVSKITES [J].
BOCKRIS, JO ;
OTAGAWA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (02) :290-302
[5]   ELECTRODE-KINETICS OF THE OXYGEN EVOLUTION REACTION AT NICO2O4 FROM 30-PERCENT KOH - DEPENDENCE ON TEMPERATURE [J].
DAVIDSON, CR ;
KISSEL, G ;
SRINIVASAN, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1982, 132 (JAN) :129-135
[6]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35
[7]   Just a Dream-or Future Reality? [J].
Gasteiger, Hubert A. ;
Markovic, Nenad M. .
SCIENCE, 2009, 324 (5923) :48-49
[8]   Powering the planet with solar fuel (vol 1, pg 7, 2009) [J].
Gray, Harry B. .
NATURE CHEMISTRY, 2009, 1 (01) :7-7
[9]  
Hammer B, 2000, ADV CATAL, V45, P71
[10]   Development of electron holes across the temperature-induced semiconductor-metal transition in Ba1-xSrxCo1-yFeyO3-δ (x, y=0.2-0.8): a soft x-ray absorption spectroscopy study [J].
Harvey, A. S. ;
Yang, Z. ;
Infortuna, A. ;
Beckel, D. ;
Purton, J. A. ;
Gauckler, L. J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (01)