WW:: An isolated three-stranded antiparallel β-sheet domain that unfolds and refolds reversibly;: evidence for a structured hydrophobic cluster in urea and GdnHCl and a disordered thermal unfolded state

被引:147
作者
Koepf, EK
Petrassi, HM
Sudol, M
Kelly, JW
机构
[1] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[3] CUNY Mt Sinai Sch Med, Dept Biochem, New York, NY 10029 USA
关键词
beta-sheet folding; hydrophobic cluster; reversible folding; WW;
D O I
10.1110/ps.8.4.841
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The objective of this study was to evaluate the suitability of the WW domain as a desirable model system to understand the folding and stability of an isolated three-stranded antiparallel beta-sheet structure. The WW domain was subjected to thermal and chaotropic denaturation/reconstitution utilizing a variety of biophysical methods. This three-stranded sheet folds reversibly and cooperatively utilizing both urea and GdnHCl as denaturants; however, the denatured state retains structure in the form of a hydrophobic cluster involving at least one aromatic side chain. In contrast to chaotropic denaturation, thermal denaturation appears to be more complete and may be a two state process. The suitability of the WW domain for future studies aimed at understanding the kinetics and thermodynamics of antiparallel beta-sheet folding clearly emerges from this initial study. The most exciting and significant result in this manuscript is the finding that the chaotropic denatured state of WW has a hydrophobic cluster as discerned by near-UV CD evidence. The role that the denatured state plays in the folding and stability of a three-stranded beta-sheets, and its capacity for preventing aggregation may be particularly important and is the subject of ongoing studies.
引用
收藏
页码:841 / 853
页数:13
相关论文
共 65 条