Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35 -: Implications for Alzheimer's disease

被引:109
作者
Hernández, F
Pérez, M
Lucas, JJ
Mata, AM
Bhat, R
Avila, J [1 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, CSIC, Ctr Biol Mol Severo Ochoa, E-28049 Madrid, Spain
[2] AstraZeneca R&D, SE-15185 Sodertalje, Sweden
关键词
D O I
10.1074/jbc.M311512200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tauopathies, including Alzheimer's disease, are neurodegenerative disorders in which tau protein accumulates as a consequence of alterations in its metabolism. At least three different types of alterations have been described; in some cases, an aberrant mRNA splicing of tau exon 10 occurs; in other cases, the disorder is a consequence of missense mutations and, in most cases, aberrant tau hyperphosphorylation takes place. Glycogen synthase kinase-3 (GSK-3) has emerged as a key kinase that is able to interact with several proteins involved in the ethiology of Alzheimer's disease and other tauopathies. Here, we have evaluated whether GSK-3 is also able to modulate tau-mRNA splicing. Our data demonstrate that GSK-3 inhibition in cultured neurons affects tau splicing resulting in an increase in tau mRNA containing exon 10. Pre-mRNA splicing is catalyzed by a multimolecular complex including members of the serine/arginine-rich (SR) family of splicing factors. Immunofluorescence studies showed that after GSK-3 inhibition, SC35, a member of the SR family, is redistributed and enriched in nuclear speckles and colocalizes with the kinase. Furthermore, immunoprecipitated SC35 is phosphorylated by recombinant GSK-3beta. Phosphorylation of a peptide from the SR domain by GSK-3 revealed that the peptide needs to be prephosphorylated, suggesting the involvement of a priming kinase. Our results demonstrate that GSK-3 plays a crucial role in tau exon 10 splicing, raising the possibility that GSK3 could contribute to tauopathies via aberrant tau splicing.
引用
收藏
页码:3801 / 3806
页数:6
相关论文
共 64 条
[1]   STRUCTURE AND NOVEL EXONS OF THE HUMAN-TAU GENE [J].
ANDREADIS, A ;
BROWN, WM ;
KOSIK, KS .
BIOCHEMISTRY, 1992, 31 (43) :10626-10633
[2]   Tau dephosphorylation at tau-1 site correlates with its association to cell membrane [J].
Arrasate, M ;
Pérez, M ;
Avila, J .
NEUROCHEMICAL RESEARCH, 2000, 25 (01) :43-50
[3]   Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3 [J].
Beals, CR ;
Sheridan, CM ;
Turck, CW ;
Gardner, P ;
Crabtree, GR .
SCIENCE, 1997, 275 (5308) :1930-1933
[4]   Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418 [J].
Bhat, R ;
Xue, YF ;
Berg, S ;
Hellberg, S ;
Ormö, M ;
Nilsson, Y ;
Radesäter, AC ;
Jerning, E ;
Markgren, PO ;
Borgegård, T ;
Nylöf, M ;
Giménez-Cassina, A ;
Hernández, F ;
Lucas, JJ ;
Díaz-Nido, J ;
Avila, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (46) :45937-45945
[5]   Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration [J].
Bhat, RV ;
Shanley, J ;
Correll, MP ;
Fieles, WE ;
Keith, RA ;
Scott, CW ;
Lee, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :11074-11079
[6]   Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3β in the regulation of HSF-1 activity [J].
Bijur, GN ;
Jope, RS .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (06) :2401-2408
[7]   Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3β [J].
Bijur, GN ;
Jope, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (40) :37436-37442
[8]   Tau protein isoforms, phosphorylation and role in neurodegenerative disorders [J].
Buée, L ;
Bussière, T ;
Buée-Scherrer, V ;
Delacourte, A ;
Hof, PR .
BRAIN RESEARCH REVIEWS, 2000, 33 (01) :95-130
[9]   Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation, and increases net charge [J].
Bullock, BP ;
Habener, JF .
BIOCHEMISTRY, 1998, 37 (11) :3795-3809
[10]   INHIBITION OF NEURITE POLARITY BY TAU ANTISENSE OLIGONUCLEOTIDES IN PRIMARY CEREBELLAR NEURONS [J].
CACERES, A ;
KOSIK, KS .
NATURE, 1990, 343 (6257) :461-463