Design and analysis of planar shape deformation

被引:7
作者
Cheng, SW
Edelsbrunner, H
Fu, P
Lam, KP
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[3] Raindrop Geomag, Res Triangle Pk, NC USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2001年 / 19卷 / 2-3期
基金
美国国家科学基金会;
关键词
computational geometry; two dimensions; morphing; Delaunay triangulations; alpha shapes; skin curves; implementation; software;
D O I
10.1016/S0925-7721(01)00020-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Shape deformation refers to the continuous change of one geometric object to another. We develop a software tool for planning, analyzing and visualizing deformations between two shapes in R-2. The deformation is generated automatically without any user intervention or specification of feature correspondences. A unique property of the tool is the explicit availability of a two-dimensional shape space, which can be used for designing the deformation either automatically by following constraints and objectives or manually by drawing deformation paths. (C) 2001 Elsevier Science B.V All rights reserved.
引用
收藏
页码:205 / 218
页数:14
相关论文
共 14 条
[1]  
BLINN JF, 1980, ACM T GRAPHIC, V2, P235
[2]   SHAPE RECONSTRUCTION FROM PLANAR CROSS-SECTIONS [J].
BOISSONNAT, JD .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1988, 44 (01) :1-29
[3]   Shape space from deformation [J].
Cheng, HL ;
Edelsbrunner, H ;
Fu, P .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 19 (2-3) :191-204
[4]   3-DIMENSIONAL ALPHA-SHAPES [J].
EDELSBRUNNER, H ;
MUCKE, EP .
ACM TRANSACTIONS ON GRAPHICS, 1994, 13 (01) :43-72
[5]   ARRANGEMENTS OF CURVES IN THE PLANE TOPOLOGY, COMBINATORICS, AND ALGORITHMS [J].
EDELSBRUNNER, H ;
GUIBAS, L ;
PACH, J ;
POLLACK, R ;
SEIDEL, R ;
SHARIR, M .
THEORETICAL COMPUTER SCIENCE, 1992, 92 (02) :319-336
[6]   Deformable smooth surface design [J].
Edelsbrunner, H .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (01) :87-115
[7]   OPTIMAL SURFACE RECONSTRUCTION FROM PLANAR CONTOURS [J].
FUCHS, H ;
KEDEM, ZM ;
USELTON, SP .
COMMUNICATIONS OF THE ACM, 1977, 20 (10) :693-702
[8]  
Guibas L. J., 1995, Proceedings of the Eleventh Annual Symposium on Computational Geometry, P190, DOI 10.1145/220279.220300
[9]  
LAM KP, 1996, THESIS HONG KONG U S
[10]  
Lee SY, 1996, J VISUAL COMP ANIMAT, V7, P3, DOI 10.1002/(SICI)1099-1778(199601)7:1<3::AID-VIS131>3.0.CO