Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering

被引:70
作者
Yun, Sukang
Park, Yong-Kyun
Kim, Seong Kyu [1 ]
Park, Sungho
机构
[1] Sungkyunkwan Univ, Dept Chem, Sch Chem Mat Sci BK21, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol, Suwon 440746, South Korea
关键词
D O I
10.1021/ac071440c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper reports a methodology for synthesizing and ordering gold nanorods into two-dimensional arrays at a water/hexane interface. This preparation method allows the systematic control of the nanoparticle film thickness. An investigation into the thickness-dependent surface-enhanced Raman scattering (SERS) of the adsorbed molecules revealed the nanorod (NR) films to have 1 order of magnitude stronger SERS enhancement than the nanosphere (NS) under similar experimental conditions. The exposed surface areas of the prepared NR and NS films were analyzed using electrochemical methods, and it was found that they had comparable exposed surface areas. Therefore, the order of magnitude difference in the enhancement factor was not due to the differences in surface area but to their intrinsic difference in the optical coupling of each film. The difference was attributed to the high density of junction points with the NR films in comparison with the corresponding NS films. Scanning emission microscopy showed that the NR films have line contacts with each other but the NS films have point contacts, which can explain the difference in SERS intensity between the NR and NS films.
引用
收藏
页码:8584 / 8589
页数:6
相关论文
共 31 条
[1]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[2]   Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering [J].
Aroca, RF ;
Goulet, PJG ;
dos Santos, DS ;
Alvarez-Puebla, RA ;
Oliveira, ON .
ANALYTICAL CHEMISTRY, 2005, 77 (02) :378-382
[3]   Surface-enhanced Raman scattering [J].
Campion, A ;
Kambhampati, P .
CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) :241-250
[4]  
Chang R.K., 1982, Surface Enhanced Raman Scattering
[5]   Directing self-assembly of nanoparticles at water/oil interfaces [J].
Duan, HW ;
Wang, DY ;
Kurth, DG ;
Möhwald, H .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (42) :5639-5642
[6]   Collective theory for surface enhanced Raman scattering [J].
GarciaVidal, FJ ;
Pendry, JB .
PHYSICAL REVIEW LETTERS, 1996, 77 (06) :1163-1166
[7]   Polyelectrolyte-coated gold nanorods: Synthesis, characterization and immobilization [J].
Gole, A ;
Murphy, CJ .
CHEMISTRY OF MATERIALS, 2005, 17 (06) :1325-1330
[8]   Kinetic control of interparticle spacing in Au colloid-based surfaces: Rational nanometer-scale architecture [J].
Grabar, KC ;
Smith, PC ;
Musick, MD ;
Davis, JA ;
Walter, DG ;
Jackson, MA ;
Guthrie, AP ;
Natan, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (05) :1148-1153
[9]   Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films [J].
Hu, XG ;
Cheng, WL ;
Wang, T ;
Wang, YL ;
Wang, EK ;
Dong, SJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (41) :19385-19389
[10]   Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model [J].
Jain, Prashant K. ;
Eustis, Susie ;
El-Sayed, Mostafa A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (37) :18243-18253