Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires

被引:175
作者
Freeborn, Patrick H. [1 ,2 ]
Wooster, Martin J. [1 ]
Hao, Wei Min [2 ]
Ryan, Cecily A. [2 ]
Nordgren, Bryce L. [2 ]
Baker, Stephen P. [2 ]
Ichoku, Charles [3 ,4 ]
机构
[1] Kings Coll London, Dept Geog, London WC2R 2LS, England
[2] Rocky Mt Res Stn, Fire Sci Lab, Missoula, MT 59808 USA
[3] Univ Maryland, Earth Sci Syst Interdisciplinary Ctr, College Pk, MD 20742 USA
[4] NASA, Goddard Space Flight Ctr, Climate & Radiat Branch, Greenbelt, MD USA
基金
英国自然环境研究理事会;
关键词
D O I
10.1029/2007JD008679
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Forty-four small-scale experimental fires were conducted in a combustion chamber to examine the relationship between biomass consumption, smoke production, convective energy release, and middle infrared (MIR) measurements of fire radiative energy (FRE). Fuel bed weights, trace gas and aerosol particle concentrations, stack flow rate and temperature, and concurrent thermal images were collected during laboratory-controlled burns of vegetative fuels. Using two different MIR thermal imaging systems, measurements of FRE taken at polar angles of. angle 48 degrees and angle 60 degrees were found not to be significantly different from each other (p < 0.05), but were significantly different from those obtained at. angle 76 degrees. A simple linear regression revealed that less than 12% of the variation in biomass consumption remained unexplained by the measured FRE regardless of MIR sensor characteristics, fuel type, or viewing angle. Measurements of FRE detected per unit of dry organic material consumed ranged from 1.29 to 4.18 MJ/ kg, corresponding to an average of 12 +/- 3% of the higher heating value of the biomass. Whole-fire emission factors agreed with previously reported values, and emission ratios relating total mass production to FRE were determined for CO2, CO, NO, NO2, and particulate matter less than 2.5 mu m in aerodynamic diameter. A heat balance performed on the system showed that the release of convective energy could be predicted from a measurement of FRE (r(2) >= 0.84), and together these two modes of heat transfer accounted for 61 +/- 13% of the total, potential heat of combustion available in the preburn solid fuel.
引用
收藏
页数:17
相关论文
共 48 条
[1]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[2]  
[Anonymous], 1974, HDB INVENTORYING DOW
[3]  
Battye W., 2002, DEV EMISSIONS INVENT
[4]  
Brown A.A., 1973, Forest fire: Control and Use
[5]  
Burns R.M., 1990, AGR HDB, V654
[6]   Measurements of radiant emissive power and temperatures in crown fires [J].
Butler, BW ;
Cohen, J ;
Latham, DJ ;
Schuette, RD ;
Sopko, P ;
Shannon, KS ;
Jimenez, D ;
Bradshaw, LS .
CANADIAN JOURNAL OF FOREST RESEARCH, 2004, 34 (08) :1577-1587
[7]   Particle emissions from laboratory combustion of wildland fuels:: In situ optical and mass measurements [J].
Chen, LWA ;
Moosmüller, H ;
Arnott, WP ;
Chow, JC ;
Watson, JG .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (04)
[8]   Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC- MS/FID/ECD [J].
Christian, TJ ;
Kleiss, B ;
Yokelson, RJ ;
Holzinger, R ;
Crutzen, PJ ;
Hao, WM ;
Shirai, T ;
Blake, DR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D2)
[9]   Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels [J].
Christian, TJ ;
Kleiss, B ;
Yokelson, RJ ;
Holzinger, R ;
Crutzen, PJ ;
Hao, WM ;
Saharjo, BH ;
Ward, DE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D23)
[10]   BIOMASS BURNING IN THE TROPICS - IMPACT ON ATMOSPHERIC CHEMISTRY AND BIOGEOCHEMICAL CYCLES [J].
CRUTZEN, PJ ;
ANDREAE, MO .
SCIENCE, 1990, 250 (4988) :1669-1678