Regulation of cystic fibrosis transmembrane regulator trafficking and protein expression by a rho family small GTPase TC10

被引:25
作者
Cheng, J [1 ]
Wang, H [1 ]
Guggino, WB [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA
关键词
D O I
10.1074/jbc.M410026200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cystic fibrosis transmembrane conductance regulator (CFTR)-interacting protein, CFTR-associated ligand (CAL) down-regulates total and cell surface CFTR by targeting CFTR for degradation in the lysosome. Here, we report that a Rho family small GTPase TC10 interacts with CAL. This interaction specifically up-regulates CFTR protein expression. Co-expression of the constitutively active form, TC10Q75L, increases total and cell surface CFTR in a dose-dependent fashion. Moreover, co-expression of the dominant-negative mutant TC10T31N causes a dose-dependent reduction in mature CFTR. The effect of TC10 is independent of the level of CFTR expression, because a similar effect was observed in a stable cell line that expresses one-tenth of CFTR. Co-expression of TC10Q75L did not have a similar effect on the expression of plasma membrane proteins such as Frizzled-3 and Pr-cadherin or cytosolic proteins such as tubulin and green fluorescent protein. TC10Q75L also did not have a similar effect on the vesicular stomatitis virus glycoprotein. Co-expression of constitutively active and dominant-negative forms of Cdc42 or RhoA did not affect CFTR expression in a manner similar to TC10, indicating that the effect of TC10 is unique within the Rho family. Metabolic pulse-chase experiments show that TC10 did not affect CFTR maturation, suggesting that it exerts its effects on the mature CFTR. Importantly, TC10Q75L reverses CAL-mediated CFTR degradation, suggesting that TC10Q75L inhibits CAL-mediated degradation of CFTR. TC10Q75L does not operate by reducing CAL protein expression or its ability to form dimers or interact with CFTR. Interestingly, the expression of TC10Q75L causes a dramatic redistribution of CAL from the juxtanuclear region to the plasma membrane where the two molecules overlap. These data suggest that TC10 regulates both total and plasma membrane CFTR expression by interacting with CAL. The GTP-bound form of TC10 directs the trafficking of CFTR from the juxtanuclear region to the secretory pathway toward the plasma membrane, away from CAL-mediated degradation of CFTR in the lysosome.
引用
收藏
页码:3731 / 3739
页数:9
相关论文
共 37 条
[1]   MEVINOLIN - A HIGHLY POTENT COMPETITIVE INHIBITOR OF HYDROXYMETHYLGLUTARYL-COENZYME-A REDUCTASE AND A CHOLESTEROL-LOWERING AGENT [J].
ALBERTS, AW ;
CHEN, J ;
KURON, G ;
HUNT, V ;
HUFF, J ;
HOFFMAN, C ;
ROTHROCK, J ;
LOPEZ, M ;
JOSHUA, H ;
HARRIS, E ;
PATCHETT, A ;
MONAGHAN, R ;
CURRIE, S ;
STAPLEY, E ;
ALBERSSCHONBERG, G ;
HENSENS, O ;
HIRSHFIELD, J ;
HOOGSTEEN, K ;
LIESCH, J ;
SPRINGER, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (07) :3957-3961
[2]   H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway [J].
Apolloni, A ;
Prior, IA ;
Lindsay, M ;
Parton, RG ;
Hancock, JF .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (07) :2475-2487
[3]   COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments [J].
Benharouga, M ;
Haardt, M ;
Kartner, N ;
Lukacs, GL .
JOURNAL OF CELL BIOLOGY, 2001, 153 (05) :957-970
[4]   Association of a novel PDZ domain-containing peripheral golgi protein with the Q-SNARE (Q-soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor) protein syntaxin 6 [J].
Charest, A ;
Lane, K ;
McMahon, K ;
Housman, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29456-29465
[5]   Modulation of mature cystic fibrosis transmembrane regulator protein by the PDZ domain protein CAL [J].
Cheng, J ;
Wang, H ;
Guggino, WB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (03) :1892-1898
[6]   A golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression [J].
Cheng, J ;
Moyer, BD ;
Milewski, M ;
Loffing, J ;
Ikeda, M ;
Mickle, JE ;
Cutting, GR ;
Li, M ;
Stanton, BA ;
Guggino, WB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3520-3529
[7]   Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10 [J].
Chiang, SH ;
Baumann, CA ;
Kanzaki, M ;
Thurmond, DC ;
Watson, RT ;
Neudauer, CL ;
Macara, IG ;
Pessin, JE ;
Saltiel, AR .
NATURE, 2001, 410 (6831) :944-948
[8]  
CHUNQIU HJ, 2003, MOL BIOL CELL, V14, P3578
[9]   Endocytic trafficking routes of wild type and ΔF508 cystic fibrosis transmembrane conductance regulator [J].
Gentzsch, M ;
Chang, XB ;
Cui, LY ;
Wu, YF ;
Ozols, VV ;
Choudhury, A ;
Pagano, RE ;
Riordan, JR .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (06) :2684-2696
[10]   The PDZ-binding chloride channel ClC-3B localizes to the golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins [J].
Gentzsch, M ;
Cui, LY ;
Mengos, A ;
Chang, XB ;
Chen, JH ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (08) :6440-6449