Spinal opioid mu receptor expression in lumbar spinal cord of rats following nerve injury

被引:106
作者
Porreca, F [1 ]
Tang, QB
Bian, D
Riedl, M
Elde, R
Lai, J
机构
[1] Univ Arizona, Hlth Sci Ctr, Dept Pharmacol, Tucson, AZ 85724 USA
[2] Univ Minnesota, Dept Cell Biol & Neuroanat, Minneapolis, MN 55455 USA
[3] Univ Arizona, Hlth Sci Ctr, Dept Anesthesiol, Tucson, AZ 85724 USA
关键词
rat; Mu opioid receptor; neuropathic pain; morphine; G-protein;
D O I
10.1016/S0006-8993(98)00292-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Previous studies in rats have shown that spinal morphine loses potency and efficacy to suppress an acute nociceptive stimulus applied to the tail or the paw following injury to peripheral nerves by tight ligation of the L5/L6 spinal nerves. Additionally, intrathecal (i.th.) morphine is ineffective in suppressing tactile allodynia at fully antinociceptive doses in these animals. The molecular basis for this loss of morphine potency and efficacy in nerve injury states is not known. One possible explanation for this phenomenon is a generalized, multi-segmental loss of opioid mu (mu) receptors in the dorsal horn of the spinal cord after nerve injury. This hypothesis was tested here by determining whether nerve injury produces (a) a decrease in mu receptors in the lumbar spinal cord; (b) a decrease in the affinity of ligand-receptor interaction, (c) a decrease in the fraction of high-affinity state of the mu receptors and (d) a reduced ability of morphine to activate G-proteins via mu receptors. Lumbar spinal cord tissues were examined 7 days after the nerve injury, a time when stable allodynia was observed. At this point, no differences were observed in the receptor density or affinity of [H-3]DAMGO (mu selective agonist) or [H-3]CTAP (mu selective antagonist) in the dorsal quadrant of lumbar spinal cord ipsilateral to nerve injury. Additionally, no change in morphine's potency and efficacy in activating G-proteins was observed. In contrast, staining for mu opioid receptors using mu-selective antibodies revealed a discrete loss of mu opioid receptors localized ipsilateral to the nerve injury and specific for sections taken at the L6 level. At these spinal segments, mu opioid receptors were decreased in laminae I and II. The data indicate that the loss of mu opioid receptors are highly localized and may contribute to the loss of morphine activity involving input at these spinal segments (e.g., foot-flick response). On the other hand, the lack of a generalized loss of opioid mu receptors across spinal segments makes it unlikely that this is the primary cause for the loss of potency and efficacy of mu opioids to suppress multi-segmental reflexes, such as the tail-flick response. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 22 条
[1]   LACK OF ANALGESIC EFFECT OF OPIOIDS ON NEUROPATHIC AND IDIOPATHIC FORMS OF PAIN [J].
ARNER, S ;
MEYERSON, BA .
PAIN, 1988, 33 (01) :11-23
[2]  
ARVIDSSON U, 1995, J NEUROSCI, V15, P3328
[3]  
ARVIDSSON U, 1995, J NEUROSCI, V15, P1215
[4]   TIME-RELATED DECREASES IN MU AND DELTA OPIOID RECEPTORS IN THE SUPERFICIAL DORSAL HORN OF THE RAT SPINAL-CORD FOLLOWING A LARGE UNILATERAL DORSAL RHIZOTOMY [J].
BESSE, D ;
LOMBARD, MC ;
BESSON, JM .
BRAIN RESEARCH, 1992, 578 (1-2) :115-121
[5]   REGULATION OF OPIOID BINDING-SITES IN THE SUPERFICIAL DORSAL HORN OF THE RAT SPINAL-CORD FOLLOWING LOOSE LIGATION OF THE SCIATIC-NERVE - COMPARISON WITH SCIATIC-NERVE SECTION AND LUMBAR DORSAL RHIZOTOMY [J].
BESSE, D ;
LOMBARD, MC ;
PERROT, S ;
BESSON, JM .
NEUROSCIENCE, 1992, 50 (04) :921-933
[6]   CHARACTERIZATION OF THE ANTIALLODYNIC EFFICACY OF MORPHINE IN A MODEL OF NEUROPATHIC PAIN IN RATS [J].
BIAN, D ;
NICHOLS, ML ;
OSSIPOV, MH ;
LAI, J ;
PORRECA, F .
NEUROREPORT, 1995, 6 (15) :1981-1984
[7]   IMMUNOFLUORESCENT IDENTIFICATION OF A DELTA-(DELTA)-OPIOID RECEPTOR ON PRIMARY AFFERENT NERVE-TERMINALS [J].
DADO, RJ ;
LAW, PY ;
LOH, HH ;
ELDE, R .
NEUROREPORT, 1993, 5 (03) :341-344
[8]  
Goff JR, 1998, NEUROSCIENCE, V82, P559
[9]   ACTIVATION OF CARDIAC G-PROTEINS BY MUSCARINIC ACETYLCHOLINE-RECEPTORS - REGULATION BY MG-2+ AND NA+ IONS [J].
HILF, G ;
JAKOBS, KH .
EUROPEAN JOURNAL OF PHARMACOLOGY-MOLECULAR PHARMACOLOGY SECTION, 1989, 172 (02) :155-163
[10]  
KIM SH, 1992, PAIN, V50, P355, DOI 10.1016/0304-3959(92)90041-9