Pulling geometry defines the mechanical resistance of a β-sheet protein

被引:309
作者
Brockwell, DJ
Paci, E
Zinober, RC
Beddard, GS
Olmsted, PD
Smith, DA
Perham, RN
Radford, SE [1 ]
机构
[1] Univ Leeds, Sch Biochem & Mol Biol, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Zurich, Inst Biochem, CH-8057 Zurich, Switzerland
[3] Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Leeds, Dept Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[5] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
D O I
10.1038/nsb968
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proteins show diverse responses when placed under mechanical stress. The molecular origins of their differing mechanical resistance are still unclear, although the orientation of secondary structural elements relative to the applied force vector is thought to have an important function. Here, by using a method of protein immobilization that allows force to be applied to the same all-beta protein, E2lip3, in two different directions, we show that the energy landscape for mechanical unfolding is markedly anisotropic. These results, in combination with molecular dynamics ( MD) simulations, reveal that the unfolding pathway depends on the pulling geometry and is associated with unfolding forces that differ by an order of magnitude. Thus, the mechanical resistance of a protein is not dictated solely by amino acid sequence, topology or unfolding rate constant, but depends critically on the direction of the applied extension.
引用
收藏
页码:731 / 737
页数:7
相关论文
共 45 条
  • [1] Pathways and intermediates in forced unfolding of spectrin repeats
    Altmann, SM
    Grünberg, RG
    Lenne, PF
    Ylänne, J
    Raae, A
    Herbert, K
    Saraste, M
    Nilges, M
    Hörber, JKH
    [J]. STRUCTURE, 2002, 10 (08) : 1085 - 1096
  • [2] Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation
    Best, RB
    Li, B
    Steward, A
    Daggett, V
    Clarke, J
    [J]. BIOPHYSICAL JOURNAL, 2001, 81 (04) : 2344 - 2356
  • [3] The effect of core destabilization on the mechanical resistance of I27
    Brockwell, DJ
    Beddard, GS
    Clarkson, J
    Zinober, RC
    Blake, AW
    Trinick, J
    Olmsted, PD
    Smith, DA
    Radford, SE
    [J]. BIOPHYSICAL JOURNAL, 2002, 83 (01) : 458 - 472
  • [4] CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS
    BROOKS, BR
    BRUCCOLERI, RE
    OLAFSON, BD
    STATES, DJ
    SWAMINATHAN, S
    KARPLUS, M
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) : 187 - 217
  • [5] Mechanical unfolding of a β-hairpin using molecular dynamics
    Bryant, Z
    Pande, VS
    Rokhsar, DS
    [J]. BIOPHYSICAL JOURNAL, 2000, 78 (02) : 584 - 589
  • [6] Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule
    Carl, P
    Kwok, CH
    Manderson, G
    Speicher, DW
    Discher, DE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (04) : 1565 - 1570
  • [7] The mechanical stability of ubiquitin is linkage dependent
    Carrion-Vazquez, M
    Li, HB
    Lu, H
    Marszalek, PE
    Oberhauser, AF
    Fernandez, JM
    [J]. NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) : 738 - 743
  • [8] Mechanical and chemical unfolding of a single protein: A comparison
    Carrion-Vazquez, M
    Oberhauser, AF
    Fowler, SB
    Marszalek, PE
    Broedel, SE
    Clarke, J
    Fernandez, JM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) : 3694 - 3699
  • [9] Mechanical design of proteins-studied by single-molecule force spectroscopy and protein engineering
    Carrion-Vazquez, M
    Oberhauser, AF
    Fisher, TE
    Marszalek, PE
    Li, HB
    Fernandez, JM
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2000, 74 (1-2) : 63 - 91
  • [10] Dynamic strength of molecular adhesion bonds
    Evans, E
    Ritchie, K
    [J]. BIOPHYSICAL JOURNAL, 1997, 72 (04) : 1541 - 1555