Dynamics of intramural and transmural reentry during ventricular fibrillation in isolated swine ventricles

被引:112
作者
Valderrábano, M
Lee, MH
Ohara, T
Lai, AC
Fishbein, MC
Lin, SF
Karagueuzian, HS
Chen, PS
机构
[1] Cedars Sinai Med Ctr, Dept Med, Div Cardiol, Los Angeles, CA 90048 USA
[2] Univ Calif Los Angeles, Sch Med, Dept Anat & Pathol, Los Angeles, CA USA
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
关键词
intramural reentry; fibrillation; anisotropy; Purkinje; papillary muscle;
D O I
10.1161/hh0801.089259
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The intramural dynamics of ventricular fibrillation (VF) remain poorly understood. Recent investigations have suggested that stable intramural reentry may underlie the mechanisms of VF. We performed optical mapping studies of VF in isolated swine right ventricles (RVs) and left ventricles (LVs). Nine RV walls were cut obliquely in their distal edge exposing the transmural surface, Six LV wedge preparations were also studied. Results showed that intramural reentry was present. In RV, 28 of 44 VF episodes showed reentry; 15% of the activation pathways were reentrant. Except for 4 episodes, reentry was transmural, involving subendocardial structures as the papillary muscle (PM) or trabeculae. Tn LV, reentry was observed in 27 of 27 VF episodes: 23% of the activations were part of reentrant pathways (P<0.05 compared with RV). All LV reentrant pathways were truly intramural (confined to the wall) and were frequently located at the PM insertion, In both ventricles, reentry was spatially and temporally unstable. Histological studies showed abrupt changes in fiber orientation at sites of reentry and wave splitting. Connexin 40 immunostaining demonstrated intramyocardial Purkinje fibers at sites of reentry in the PM root and around endocardial trabeculae. Our results confirm that reentry is frequent-but unstable-in the myocardial wall during VF. In RV, reentry is mostly transmural and requires participation of subendocardial structures. The LV has a greater incidence of reentry and is intramural, Anisotropic anatomic structures played key roles in the generation of wave splitting and in the maintenance of reentry.
引用
收藏
页码:839 / 848
页数:10
相关论文
共 37 条
[1]   Visualizing excitation waves inside cardiac muscle using transillumination [J].
Baxter, WT ;
Mironov, SF ;
Zaitsev, AV ;
Jalife, J ;
Pertsov, AM .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :516-530
[2]   Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles [J].
Berenfeld, O ;
Jalife, J .
CIRCULATION RESEARCH, 1998, 82 (10) :1063-1077
[3]   Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropy [J].
Berenfeld, O ;
Pertsov, AM .
JOURNAL OF THEORETICAL BIOLOGY, 1999, 199 (04) :383-394
[4]   WAVE-FRONT CURVATURE AS A CAUSE OF SLOW CONDUCTION AND BLOCK IN ISOLATED CARDIAC-MUSCLE [J].
CABO, C ;
PERTSOV, AM ;
BAXTER, WT ;
DAVIDENKO, JM ;
GRAY, RA ;
JALIFE, J .
CIRCULATION RESEARCH, 1994, 75 (06) :1014-1028
[5]   High-frequency periodic sources underlie ventricular fibrillation in the isolated rabbit heart [J].
Chen, J ;
Mandapati, R ;
Berenfeld, O ;
Skanes, AC ;
Jalife, J .
CIRCULATION RESEARCH, 2000, 86 (01) :86-93
[6]   COMPARISON OF ACTIVATION DURING VENTRICULAR-FIBRILLATION AND FOLLOWING UNSUCCESSFUL DEFIBRILLATION SHOCKS IN OPEN-CHEST DOGS [J].
CHEN, PS ;
WOLF, PD ;
MELNICK, SD ;
DANIELEY, ND ;
SMITH, WM ;
IDEKER, RE .
CIRCULATION RESEARCH, 1990, 66 (06) :1544-1560
[7]   MECHANISM OF VENTRICULAR VULNERABILITY TO SINGLE PREMATURE STIMULI IN OPEN-CHEST DOGS [J].
CHEN, PS ;
WOLF, PD ;
DIXON, EG ;
DANIELEY, ND ;
FRAZIER, DW ;
SMITH, WM ;
IDEKER, RE .
CIRCULATION RESEARCH, 1988, 62 (06) :1191-1209
[8]   STATIONARY AND DRIFTING SPIRAL WAVES OF EXCITATION IN ISOLATED CARDIAC-MUSCLE [J].
DAVIDENKO, JM ;
PERTSOV, AV ;
SALOMONSZ, R ;
BAXTER, W ;
JALIFE, J .
NATURE, 1992, 355 (6358) :349-351
[9]   STIMULUS-INDUCED CRITICAL-POINT - MECHANISM FOR ELECTRICAL INITIATION OF REENTRY IN NORMAL CANINE MYOCARDIUM [J].
FRAZIER, DW ;
WOLF, PD ;
WHARTON, JM ;
TANG, ASL ;
SMITH, WM ;
IDEKER, RE .
JOURNAL OF CLINICAL INVESTIGATION, 1989, 83 (03) :1039-1052
[10]   OVERDRIVE SUPPRESSION OF CONDUCTION AT THE CANINE PURKINJE-MUSCLE JUNCTION [J].
GILMOUR, RF ;
DAVIS, JR ;
ZIPES, DP .
CIRCULATION, 1987, 76 (06) :1388-1396