Membrane insertion, processing, and topology of cystic fibrosis transmembrane conductance regulator (CFTR) in microsomal membranes

被引:21
作者
Chen, MG [1 ]
Zhang, JT [1 ]
机构
[1] UNIV TEXAS, MED BRANCH, DEPT PHYSIOL & BIOPHYS, GALVESTON, TX 77555 USA
关键词
topology; CFTR; signal sequence; in vitro expression; P-glycoprotein;
D O I
10.3109/09687689609160572
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated Cl- channel. Malfunction of CFTR causes cystic fibrosis (CF). CFTR belongs to an ATP-binding cassette (ABC) transporter superfamily which includes P-glycoprotein (Pgp), the molecule that is responsible for multidrug resistance in cancer cells. P-glycoprotein molecules have been suggested to have more than one topology and function. In this study, we analysed the early stages of membrane insertion, processing, and topology of human CFTR using rabbit reticulocyte lysate and wheat germ extract translation systems supplemented with canine pancreatic microsomal membranes. Our results suggest that CFTR contains an uncleavable signal sequence and its membrane targeting and insertion may depend on the signal recognition particle (SRP) and SRP receptor. The topology of CFTR in microsomal membranes is the same as the one predicted based on hydropathy plot analysis. These results, together with our previous findings on Pgp, indicate that (1) the topologies of mammalian ABC transporters can be dissected and studied using protein fusion chimeras in a cell-free system; and (2) the membrane targeting and insertion of CFTR and Pgp may take the same pathway, i.e., the SRP-dependent pathway, but the membrane folding mechanism of these two proteins in microsomal membranes is probably different.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 37 条
[1]   PURIFICATION AND FUNCTIONAL RECONSTITUTION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) [J].
BEAR, CE ;
LI, CH ;
KARTNER, N ;
BRIDGES, RJ ;
JENSEN, TJ ;
RAMJEESINGH, M ;
RIORDAN, JR .
CELL, 1992, 68 (04) :809-818
[2]  
BIBI E, 1994, J BIOL CHEM, V269, P19910
[3]  
CHANG XB, 1994, J BIOL CHEM, V269, P18572
[4]   INTERNAL DUPLICATION AND HOMOLOGY WITH BACTERIAL TRANSPORT PROTEINS IN THE MDR1 (P-GLYCOPROTEIN) GENE FROM MULTIDRUG-RESISTANT HUMAN-CELLS [J].
CHEN, CJ ;
CHIN, JE ;
UEDA, K ;
CLARK, DP ;
PASTAN, I ;
GOTTESMAN, MM ;
RONINSON, IB .
CELL, 1986, 47 (03) :381-389
[5]   DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS [J].
CHENG, SH ;
GREGORY, RJ ;
MARSHALL, J ;
PAUL, S ;
SOUZA, DW ;
WHITE, GA ;
ORIORDAN, CR ;
SMITH, AE .
CELL, 1990, 63 (04) :827-834
[6]  
Childs S, 1994, Important Adv Oncol, P21
[7]   LOCALIZATION OF CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR IN CHLORIDE SECRETORY EPITHELIA [J].
DENNING, GM ;
OSTEDGAARD, LS ;
CHENG, SH ;
SMITH, AE ;
WELSH, MJ .
JOURNAL OF CLINICAL INVESTIGATION, 1992, 89 (01) :339-349
[8]  
Endicott J A, 1991, DNA Seq, V2, P89, DOI 10.3109/10425179109039677
[9]   REGULATION OF CFTR CHANNEL GATING [J].
GADSBY, DC ;
NAIRN, AC .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (11) :513-518
[10]   HOMOLOGY BETWEEN P-GLYCOPROTEIN AND A BACTERIAL HEMOLYSIN TRANSPORT PROTEIN SUGGESTS A MODEL FOR MULTIDRUG RESISTANCE [J].
GERLACH, JH ;
ENDICOTT, JA ;
JURANKA, PF ;
HENDERSON, G ;
SARANGI, F ;
DEUCHARS, KL ;
LING, V .
NATURE, 1986, 324 (6096) :485-489