Presynaptic inhibition of GABAA receptor-mediated unitary IPSPs by cannabinoid receptors at synapses between CCK-positive interneurons in rat hippocampus

被引:47
作者
Ali, Afia B. [1 ]
机构
[1] Univ London, Sch Pharm, Dept Pharmacol, London WC1N 1AX, England
基金
英国医学研究理事会;
关键词
D O I
10.1152/jn.00156.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
There is growing evidence to link cholecystokinin (CCK)-positive interneurons and anxiety disorders. Despite this, little is known about the physiology and pharmacology of synaptic interactions between CCK-positive interneurons. This study aims to investigate the local circuit connections among CCK-positive Schaffer collateral associated (SCA) interneurons in stratum radiatum (SR) and their modulatory interactions using paired whole cell recordings combined with biocytin and double immunofluorescence labeling in slices of rat hippocampus. The cell bodies of SCA interneurons were located in SR, and their sparsely spiny dendrites projected toward s. pyramidale (SP) and along SR. Their axons innervated SR, SP, and s. oriens (SO) with predominant ramification in SR. These cells were immunopositive for CCK and immunonegative for parvalbumin (PV). SCA interneurons often displayed an accommodating firing pattern with or without a "sag" in response to hyperpolarizing current injection. Pairs of these cells exhibited electrical coupling and reciprocal chemical connections in which inhibitory postsynaptic potentials (IPSPs) displayed powerful frequency-dependent facilitation and augmentation. The synaptic connections were modulated by the endogenous cannabinoid receptor (CB) agonist, anandamide and by depolarization-induced suppression of inhibition (DSI), both of which reduced the amplitude of unitary IPSPs to 50% of control and increased the number of apparent failures of transmission. These effects were blocked by the CB1 receptor antagonist, AM-251. I suggest that synaptic facilitation between CCK-positive SCA interneurons may modify the onset of CB1 receptor-mediated regulation of inhibition, thereby affecting spike timing, and that this process could influence the expression of anxiety.
引用
收藏
页码:861 / 869
页数:9
相关论文
共 49 条
[1]  
ALGER BE, 1996, J PHYSL, V1, P197
[2]   Distinct Ca2+ channels mediate transmitter release at excitatory synapses displaying different dynamic properties in rat neocortex [J].
Ali, AB ;
Nelson, C .
CEREBRAL CORTEX, 2006, 16 (03) :386-393
[3]   CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices [J].
Ali, AB ;
Deuchars, J ;
Pawelzik, H ;
Thomson, AM .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 507 (01) :201-217
[4]   IPSPs elicited in CA1 pyramidal cells by putative basket cells in slices of adult rat hippocampus [J].
Ali, AB ;
Bannister, AP ;
Thomson, AM .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1999, 11 (05) :1741-1753
[5]   Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus [J].
Ali, AB ;
Thomson, AM .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 507 (01) :185-199
[6]  
ALI AB, 2007, J PHYSL
[7]   Anxiogenic properties of an inverse agonist selective for α3 subunit-containing GABAA receptors [J].
Atack, JR ;
Hutson, PH ;
Collinson, N ;
Marshall, G ;
Bentley, G ;
Moyes, C ;
Cook, SM ;
Collins, I ;
Wafford, K ;
McKernan, RM ;
Dawson, GR .
BRITISH JOURNAL OF PHARMACOLOGY, 2005, 144 (03) :357-366
[8]   IMMUNOHISTOCHEMICAL LOCALIZATION OF CALCIUM-BINDING PROTEIN IN THE CEREBELLUM, HIPPOCAMPAL-FORMATION AND OLFACTORY-BULB OF THE RAT [J].
BAIMBRIDGE, KG ;
MILLER, JJ .
BRAIN RESEARCH, 1982, 245 (02) :223-229
[9]   Two dynamically distinct inhibitory networks in layer 4 of the neocortex [J].
Beierlein, M ;
Gibson, JR ;
Connors, BW .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (05) :2987-3000
[10]   Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus [J].
Cope, DW ;
Maccaferri, G ;
Marton, LF ;
Roberts, JDB ;
Cobden, PM ;
Somogyi, P .
NEUROSCIENCE, 2002, 109 (01) :63-80