Using genome scans of DNA polymorphism to infer adaptive population divergence

被引:505
作者
Storz, JF [1 ]
机构
[1] San Francisco State Univ, Dept Biol, 1600 Holloway Ave, San Francisco, CA 94132 USA
关键词
adaptation; genomics; natural selection; neutral theory; population genomics; positive selection; QTL; speciation;
D O I
10.1111/j.1365-294X.2005.02437.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elucidating the genetic basis of adaptive population divergence is a goal of central importance in evolutionary biology. In principle, it should be possible to identify chromosomal regions involved in adaptive divergence by screening genome-wide patterns of DNA polymorphism to detect the locus-specific signature of positive directional selection. In the case of spatially separated populations that inhabit different environments or sympatric populations that exploit different ecological niches, it is possible to identify loci that underlie divergently selected traits by comparing relative levels of differentiation among large numbers of unlinked markers. In this review I first address the question of whether diversifying selection on polygenic traits can be expected to produce predictable patterns of allelic variation at the underlying quantitative trait loci (QTL), and whether the locus-specific effects of selection can be reliably detected against the genome-wide backdrop of stochastic variability. I then review different approaches that have been developed to identify loci involved in adaptive population divergence and I discuss the relative merits of model-based approaches that rely on assumptions about population structure vs. model-free approaches that are based on empirical distributions of summary statistics. Finally, I consider the evolutionary and functional insights that might be gained by conducting genome scans for loci involved in adaptive population divergence.
引用
收藏
页码:671 / 688
页数:18
相关论文
共 129 条
[1]   Interrogating a high-density SNP map for signatures of natural selection [J].
Akey, JM ;
Zhang, G ;
Zhang, K ;
Jin, L ;
Shriver, MD .
GENOME RESEARCH, 2002, 12 (12) :1805-1814
[2]  
Anderson Tim J. C., 2004, Current Drug Targets - Infectious Disorders, V4, P65, DOI 10.2174/1568005043480943
[3]   Adaptive hitchhiking effects on genome variability [J].
Andolfatto, P .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2001, 11 (06) :635-641
[4]  
[Anonymous], 1991, The Causes of Molecular Evolution
[5]  
[Anonymous], 1974, GENETIC BASIS EVOLUT
[6]   A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5 [J].
Bamshad, MJ ;
Mummidi, S ;
Gonzalez, E ;
Ahuja, SS ;
Dunn, DM ;
Watkins, WS ;
Wooding, S ;
Stone, AC ;
Jorde, LB ;
Weiss, RB ;
Ahuja, SK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (16) :10539-10544
[7]   THE BARRIER TO GENETIC EXCHANGE BETWEEN HYBRIDIZING POPULATIONS [J].
BARTON, N ;
BENGTSSON, BO .
HEREDITY, 1986, 57 :357-376
[8]   Clines in polygenic traits [J].
Barton, NH .
GENETICS RESEARCH, 1999, 74 (03) :223-236
[9]   Genetic hitchhiking [J].
Barton, NH .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2000, 355 (1403) :1553-1562
[10]  
BARTON NH, 1995, GENETICS, V140, P821