Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration

被引:173
作者
Haftbaradaran, Hamed [1 ]
Song, Jun [1 ]
Curtin, W. A. [1 ]
Gao, Huajian [1 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
关键词
Diffusion-induced stress; Atomistic simulations; Stoichiometric limit; Activation energy; Binding energy; INTERCALATION-INDUCED STRESS; VACANCY SOLUTION THEORY; ELASTIC BAND METHOD; ELECTROCHEMICAL LITHIATION; MOLECULAR-DYNAMICS; ELECTRODE; ADSORPTION; GENERATION; FRACTURE; GAS;
D O I
10.1016/j.jpowsour.2010.06.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poor cyclic performance of electrodes in lithium-ion rechargeable cell batteries is calling for efforts to develop continuum models of diffusion under very large stresses and high solute concentrations. The present work is aimed to develop such a model based on input from atomistic simulations. We consider four fundamental features of highly nonlinear behavior associated with diffusion at high solute concentrations. First, the effect of solute-induced stresses on the activation energy of solute diffusion could be important. Second, the solute concentration may be subject to an upper limit if there exists a stoichiometric maximum concentration. Third, the strong influence of the change in local chemical environment on the interaction energy between solute and host atoms could play a significant role. Fourth, we include the effect of the solute concentration on the Young's modulus of the host material. A continuum model is developed and validated based on atomistic simulations of hydrogen diffusion in nickel. The influences of each feature above are clearly discussed through parametric studies. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 370
页数:10
相关论文
共 62 条
[1]   TRAPPING OF HYDROGEN TO LATTICE-DEFECTS IN NICKEL [J].
ANGELO, JE ;
MOODY, NR ;
BASKES, MI .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1995, 3 (03) :289-307
[2]   THE ACTIVATION STRAIN TENSOR - NONHYDROSTATIC STRESS EFFECTS ON CRYSTAL-GROWTH KINETICS [J].
AZIZ, MJ ;
SABIN, PC ;
LU, GQ .
PHYSICAL REVIEW B, 1991, 44 (18) :9812-9816
[3]   Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes [J].
Bhandakkar, Tanmay K. ;
Gao, Huajian .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (10) :1424-1434
[4]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[5]   Amorphous silicon as a possible anode material for Li-ion batteries [J].
Bourderau, S ;
Brousse, T ;
Schleich, DM .
JOURNAL OF POWER SOURCES, 1999, 81 :233-236
[6]  
CARTER WB, 1998, PHYS REV LETT, V81, P1445
[7]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[8]   Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A508-A516
[9]   The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (08)
[10]   Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF POWER SOURCES, 2009, 190 (02) :453-460