The Fermi-Pasta-Ulam problem: Fifty years of progress

被引:252
作者
Berman, GP [1 ]
Izrailev, FM
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA
关键词
D O I
10.1063/1.1855036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A brief review of the Fermi-Pasta-Ulam (FPU) paradox is given, together with its suggested resolutions and its relation to other physical problems. We focus on the ideas and concepts that have become the core of modern nonlinear mechanics, in their historical perspective. Starting from the first numerical results of FPU, both theoretical and numerical findings are discussed in close connection with the problems of ergodicity, integrability, chaos and stability of motion. New directions related to the Bose-Einstein condensation and quantum systems of interacting Bose-particles are also considered. (C) 2005 American Institute of Physics.
引用
收藏
页数:18
相关论文
共 137 条
[1]  
[Anonymous], 1966, ANN SCUOLA NORM-SCI
[2]  
ARNOLD VI, 1964, DOKL AKAD NAUK SSSR+, V156, P9
[3]  
Arnold VI, 1963, USP MAT NAUK, V18, P113
[4]  
Arnold VI., 1968, Ergodic problems of classical mechanics
[5]   ORDERED AND STOCHASTIC-BEHAVIOR IN A TWO-DIMENSIONAL LENNARD-JONES SYSTEM [J].
BENETTIN, G ;
TENENBAUM, A .
PHYSICAL REVIEW A, 1983, 28 (05) :3020-3029
[6]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[7]   A PROOF OF NEKHOROSHEV THEOREM FOR THE STABILITY TIMES IN NEARLY INTEGRABLE HAMILTONIAN-SYSTEMS [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A .
CELESTIAL MECHANICS, 1985, 37 (01) :1-25
[8]  
BENETTIN G, 1978, CR ACAD SCI A MATH, V286, P431
[9]  
Benettin G., 1980, Meccanica, V15, P21, DOI [DOI 10.1007/BF02128237, 10.1007/BF02128237]
[10]  
BEREZIN YA, 1967, SOV PHYS JETP-USSR, V24, P1049