Membrane destabilizing properties of cell-penetrating peptides

被引:70
作者
Thorén, PEG [1 ]
Persson, D [1 ]
Lincoln, P [1 ]
Nordén, B [1 ]
机构
[1] Chalmers Univ Technol, Dept Chem & Biosci, SE-41296 Gothenburg, Sweden
关键词
protein transduction domain; inverted micelle; cellular delivery; antisense;
D O I
10.1016/j.bpc.2004.11.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although cell-penetrating peptides (CPPs), also denoted protein transduction domains (PTDs), have been widely used for intracellular delivery of large and hydrophilic molecules, the mechanism of uptake is still poorly understood. In a recent live cell study of the uptake of penetratin and tryptophan-containing analogues of Tat(48-60) and oligoarginine, denoted TatP59W, TatLysP59W and R7W, respectively, it was found that both endocytotic and non-endocytotic uptake pathways are involved [Thoren et al., Biochem. Biophys. Res. Commun. 307 (2003) 100-107]. Non-endocytotic uptake was only observed for the arginine-rich peptides TatP59W and R7W In this paper, the interactions of penetratin, R7W, TatP59W and TatLysP59W with phospholipid vesicles are compared in the search for an understanding of the mechanisms for cellular uptake. While R7W, TatP59W and TatLysP59W are found to promote vesicle fusion, indicated by mixing of membrane components, penetratin merely induces vesicle aggregation. Studies of the leakage from dye-loaded vesicles indicate that none of the peptides forms membrane pores and that vesicle fusion is not accompanied by leakage of the aqueous contents of the vesicles. These observations are important for a proper interpretation of future experiments on the interactions of these peptides with model membranes. We suggest that the discovered variations in propensity to destabilize phospholipid bilayers between the peptides investigated, in some cases sufficient to induce fusion, may be related to their different cellular uptake properties. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 62 条
[1]   POTOCYTOSIS - SEQUESTRATION AND TRANSPORT OF SMALL MOLECULES BY CAVEOLAE [J].
ANDERSON, RGW ;
KAMEN, BA ;
ROTHBERG, KG ;
LACEY, SW .
SCIENCE, 1992, 255 (5043) :410-411
[2]   Membrane fusion:: the process and its energy suppliers [J].
Basañez, G .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2002, 59 (09) :1478-1490
[3]   Poly(ethylene glycol)-lipid conjugates inhibit phospholipase C-induced lipid hydrolysis, liposome aggregation and fusion through independent mechanisms [J].
Basanez, G ;
Goni, FM ;
Alonso, A .
FEBS LETTERS, 1997, 411 (2-3) :281-286
[4]   Interaction of the third helix of Antennapedia homeodomain and a phospholipid monolayer, studied by ellipsometry and PM-IRRAS at the air-water interface [J].
Bellet-Amalric, E ;
Blaudez, D ;
Desbat, B ;
Graner, F ;
Gauthier, F ;
Renault, A .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1467 (01) :131-143
[5]   Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments [J].
Berlose, JP ;
Convert, O ;
Derossi, D ;
Brunissen, A ;
Chassaing, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 242 (02) :372-386
[6]   Membrane fusion [J].
Blumenthal, R ;
Clague, MJ ;
Durell, SR ;
Epand, RM .
CHEMICAL REVIEWS, 2003, 103 (01) :53-69
[7]   Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes [J].
Christiaens, B ;
Symoens, S ;
Vanderheyden, S ;
Engelborghs, Y ;
Joliot, A ;
Prochiantz, A ;
Vandekerckhove, J ;
Rosseneu, M ;
Vanloo, B .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (12) :2918-2926
[8]   LIPID POLYMORPHISM AND THE ROLES OF LIPIDS IN MEMBRANES [J].
CULLIS, PR ;
HOPE, MJ ;
TILCOCK, CPS .
CHEMISTRY AND PHYSICS OF LIPIDS, 1986, 40 (2-4) :127-144
[9]  
DEROSSI D, 1994, J BIOL CHEM, V269, P10444
[10]   Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent [J].
Derossi, D ;
Calvet, S ;
Trembleau, A ;
Brunissen, A ;
Chassaing, G ;
Prochiantz, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (30) :18188-18193