Tangent bifurcation of band edge plane waves, dynamical symmetry breaking and vibrational localization

被引:61
作者
Flach, S
机构
[1] Max-Planck-Institut für Physik Komplexer Systeme, D-01187 Dresden
来源
PHYSICA D | 1996年 / 91卷 / 03期
关键词
lattices; plane waves; bifurcation; localization;
D O I
10.1016/0167-2789(95)00267-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study tangent bifurcation of band edge plane waves in nonlinear Hamiltonian lattices, The lattice is translationally invariant, We argue for the breaking of permutational symmetry by the new bifurcated periodic orbits. The case of two coupled oscillators is considered as an example for the perturbation analysis, where the symmetry breaking can be traced using Poincare maps, Next we consider a lattice and derive the dependence of the bifurcation energy on the parameters of the Hamiltonian function in the limit of large system sizes, A necessary condition for the occurence of the bifurcation is the repelling of the band edge plane wave from the linear spectrum with increasing energy, We conclude that the bifurcated orbits will consequently exponentially localize in the configurational space.
引用
收藏
页码:223 / 243
页数:21
相关论文
共 33 条
[1]  
[Anonymous], LEHRBUCH THEORETISCH
[2]   STATIONARY ANHARMONIC GAP MODES IN A ONE-DIMENSIONAL DIATOMIC LATTICE WITH QUARTIC ANHARMONICITY [J].
AOKI, M ;
TAKENO, S ;
SIEVERS, AJ .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (12) :4295-4310
[3]   STATIONARY AND MOVING INTRINSIC LOCALIZED MODES IN ONE-DIMENSIONAL MONATOMIC LATTICES WITH CUBIC AND QUARTIC ANHARMONICITY [J].
BICKHAM, SR ;
KISELEV, SA ;
SIEVERS, AJ .
PHYSICAL REVIEW B, 1993, 47 (21) :14206-14211
[5]  
BONART D, 1995, IN PRESS PHYS REV LE
[6]   STABILITY OF NON-LINEAR MODES AND CHAOTIC PROPERTIES OF 1D FERMI-PASTA-ULAM LATTICES [J].
BUDINSKY, N ;
BOUNTIS, T .
PHYSICA D, 1983, 8 (03) :445-452
[7]   COMPUTER-SIMULATION OF INTRINSIC LOCALIZED MODES IN ONE-DIMENSIONAL AND 2-DIMENSIONAL ANHARMONIC LATTICES [J].
BURLAKOV, VM ;
KISELEV, SA ;
PYRKOV, VN .
PHYSICAL REVIEW B, 1990, 42 (08) :4921-4927
[8]  
CAMPBELL DK, 1990, CHAOS SOVIET AM PERS
[9]   NONPERSISTENCE OF BREATHER FAMILIES FOR THE PERTURBED SINE-GORDON EQUATION [J].
DENZLER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (02) :397-430
[10]  
FISCHER F, 1993, ANN PHYS-LEIPZIG, V2, P296, DOI 10.1002/andp.19935050308