Quantum Kolmogorov complexity

被引:47
作者
Berthiaume, A
van Dam, W
Laplante, S
机构
[1] Depaul Univ, Sch CTI, Chicago, IL 60604 USA
[2] Univ Calif Berkeley, Comp Sci Div, Berkeley, CA 94720 USA
[3] Univ Paris 11, LRI, F-91405 Orsay, France
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jcss.2001.1765
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we give a definition for quantum Kolmogorov complexity. In the classical setting, the Kolmogorov complexity of a string is the length of the shortest program that can produce this string as its output. It is a measure of the amount of innate randomness (or information) contained in the string. We define the quantum Kolmogorov complexity of a qubit string as the length of the shortest quantum input to a universal quantum Turing machine that produces the initial qubit string with high fidelity. The definition of P. Vitanyi (2001, IEEE Trans. Inform. Theory 47, 2464-2479) measures the amount of classical information, whereas we consider the amount of quantum information in a qubit string. We argue that our definition is a natural and accurate representation of the amount of quantum information contained in a quantum state. Recently, P. Gacs (2001, J. Phys. A: Mathematical and General 34, 6859-6880) also proposed two measures of quantum algorithmic entropy which are based on the existence of a universal semidensity matrix. The latter definitions are related to Vitdanyi's and the one presented in this article, respectively. (C) 2001 Academic Press.
引用
收藏
页码:201 / 221
页数:21
相关论文
共 28 条
[1]   Stabilization of quantum computations by symmetrization [J].
Barenco, A ;
Berthiaume, A ;
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1541-1557
[2]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[3]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[4]   ON LENGTH OF PROGRAMS FOR COMPUTING FINITE BINARY SEQUENCES [J].
CHAITIN, GJ .
JOURNAL OF THE ACM, 1966, 13 (04) :547-+
[5]  
Cover TM., 1991, WILEY SERIES TELECOM, P63
[6]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117
[7]   Cryptographic distinguishability measures for quantum-mechanical states [J].
Fuchs, CA ;
van de Graaf, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1216-1227
[8]   Quantum algorithmic entropy [J].
Gács, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6859-6880
[9]  
Garey M. S., 1979, COMPUTERS INTRACTIBI
[10]  
Holevo A. S., 1973, PROBL PEREDACHI INF, V9, P177