The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus

被引:269
作者
Loppin, B [1 ]
Bonnefoy, E
Anselme, C
Laurençon, A
Karr, TL
Couble, P
机构
[1] Univ Lyon 1, CNRS, UMR 5534, Ctr Genet Mol & Cellulaire, F-69622 Villeurbanne, France
[2] Inst Natl Sci Appl, INRA, UMR, F-69621 Villeurbanne, France
[3] Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England
关键词
D O I
10.1038/nature04059
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In sexually reproducing animals, a crucial step in zygote formation is the decondensation of the fertilizing spermnucleus into a DNA replication-competent male pronucleus. Genome-wide nucleosome assembly on paternal DNA implies the replacement of sperm chromosomal proteins, such as protamines, by maternally provided histones(1,2). This fundamental process is specifically impaired in sesame (ssm), a unique Drosophila maternal effect mutant that prevents male pronucleus formation(3). Here we show that ssm is a point mutation in the Hira gene, thus demonstrating that the histone chaperone protein HIRA is required for nucleosome assembly during sperm nucleus decondensation. In vertebrates, HIRA has recently been shown to be critical for a nucleosome assembly pathway independent of DNA synthesis that specifically involves the H3.3 histone variant(4,5). We also show that nucleosomes containing H3.3, and not H3, are specifically assembled in paternal Drosophila chromatin before the first round of DNA replication. The exclusive marking of paternal chromosomes with H3.3 represents a primary epigenetic distinction between parental genomes in the zygote, and underlines an important consequence of the critical and highly specialized function of HIRA at fertilization.
引用
收藏
页码:1386 / 1390
页数:5
相关论文
共 29 条
[1]   The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J].
Ahmad, K ;
Henikoff, S .
MOLECULAR CELL, 2002, 9 (06) :1191-1200
[2]   Histone H3 variants specify modes of chromatin assembly [J].
Ahmad, K ;
Henikoff, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 :16477-16484
[3]   STRUCTURE AND EXPRESSION OF HISTONE H3.3 GENES IN DROSOPHILA-MELANOGASTER AND DROSOPHILA-HYDEI [J].
AKHMANOVA, AS ;
BINDELS, PCT ;
XU, J ;
MIEDEMA, K ;
KREMER, H ;
HENNIG, W .
GENOME, 1995, 38 (03) :586-600
[4]  
Arney KL, 2002, INT J DEV BIOL, V46, P317
[5]   Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals [J].
Cowell, IG ;
Aucott, R ;
Mahadevaiah, SK ;
Burgoyne, PS ;
Huskisson, N ;
Bongiorni, S ;
Prantera, G ;
Fanti, L ;
Pimpinelli, S ;
Wu, R ;
Gilbert, DM ;
Shi, W ;
Fundele, R ;
Morrison, H ;
Jeppesen, P ;
Singh, PB .
CHROMOSOMA, 2002, 111 (01) :22-36
[6]   FlyBase: genes and gene models [J].
Drysdale, RA ;
Crosby, MA .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D390-D395
[7]  
Foe Victoria E., 1993, P149
[8]   Histone variants, nucleosome assembly and epigenetic inheritance [J].
Henikoff, S ;
Furuyama, T ;
Ahmad, K .
TRENDS IN GENETICS, 2004, 20 (07) :320-326
[9]   Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos [J].
Huynh, KD ;
Lee, JT .
NATURE, 2003, 426 (6968) :857-862
[10]   From silencing to gene expression: Real-time analysis in single cells [J].
Janicki, SM ;
Tsukamoto, T ;
Salghetti, SE ;
Tansey, WP ;
Sachidanandam, R ;
Prasanth, KV ;
Ried, T ;
Shav-Tal, Y ;
Bertrand, E ;
Singer, RH ;
Spector, DL .
CELL, 2004, 116 (05) :683-698