Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis

被引:114
作者
Chen, Yi-Feng
Shakeel, Samina N.
Bowers, Julie
Zhao, Xue-Chu
Etheridge, Naomi
Schaller, G. Eric [1 ]
机构
[1] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
[2] Univ New Hampshire, Dept Biochem & Mol Biol, Durham, NH 03824 USA
关键词
D O I
10.1074/jbc.M704419200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein degradation plays an important role in modulating ethylene signal transduction in plants. Here we show that the ethylene receptor ETR2 is one such target for degradation and that its degradation is dependent upon perception of the signaling ligand ethylene. The ETR2 protein is initially induced by ethylene treatment, consistent with an increase in transcript levels. At ethylene concentrations above 1 mu l/liter, however, ETR2 protein levels subsequently decrease in a post-transcriptional fashion. Genetic and chemical approaches indicate that ethylene perception by the receptors initiates the reduction in ETR2 protein levels. The ethylene-induced decrease in ETR2 levels is not affected by cycloheximide, an inhibitor of protein biosynthesis, but is affected by proteasome inhibitors, indicating a role for the proteasome in ETR2 degradation. Ethylene-induced degradation still occurs in seedlings treated with brefeldin A, indicating that degradation of ETR2 does not require exit from its subcellular location at the endoplasmic reticulum. These data support a model in which ETR2 is degraded by a proteasome-dependent pathway in response to ethylene binding. Implications of this model for ethylene signaling are discussed.
引用
收藏
页码:24752 / 24758
页数:7
相关论文
共 51 条
[1]  
Abeles FB., 1992, ETHYLENE PLANT BIOL
[2]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[3]   Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis [J].
Binder, BM ;
O'Malley, RC ;
Wang, WY ;
Moore, JM ;
Parks, BM ;
Spalding, EP ;
Bleecker, AB .
PLANT PHYSIOLOGY, 2004, 136 (02) :2913-2920
[4]   Short-term growth responses to ethylene in arabidopsis seedlings are EIN3/EIL1 independent [J].
Binder, BM ;
Mortimore, LA ;
Stepanova, AN ;
Ecker, JR ;
Bleecker, AB .
PLANT PHYSIOLOGY, 2004, 136 (02) :2921-2927
[5]   Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis [J].
Cancel, JD ;
Larsen, PB .
PLANT PHYSIOLOGY, 2002, 129 (04) :1557-1567
[6]   Ethylene hormone receptor action in Arabidopsis [J].
Chang, C ;
Stadler, R .
BIOESSAYS, 2001, 23 (07) :619-627
[7]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[8]   THE ETHYLENE HORMONE RESPONSE IN ARABIDOPSIS - A EUKARYOTIC 2-COMPONENT SIGNALING SYSTEM [J].
CHANG, C ;
MEYEROWITZ, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4129-4133
[9]   ANALYSIS OF ETHYLENE SIGNAL-TRANSDUCTION KINETICS ASSOCIATED WITH SEEDLING-GROWTH RESPONSE AND CHITINASE INDUCTION IN WILD-TYPE AND MUTANT ARABIDOPSIS [J].
CHEN, QHG ;
BLEECKER, AB .
PLANT PHYSIOLOGY, 1995, 108 (02) :597-607
[10]   Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis [J].
Chen, YF ;
Randlett, MD ;
Findell, JL ;
Schaller, GE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (22) :19861-19866