Expression of NMDA receptor NR1, NR2A and NR2B subunit mRNAs during development of the human hippocampal formation

被引:99
作者
Law, AJ
Weickert, CS
Webster, MJ
Herman, MM
Kleinman, JE
Harrison, PJ
机构
[1] Univ Oxford, Warneford Hosp, Dept Psychiat, Oxford OX3 7JX, England
[2] NIMH, Clin Brain Disorders Branch, Intramural Res Program, NIH, Bethesda, MD 20892 USA
[3] Uniformed Serv Univ Hlth Sci, Dept Psychiat, Stanley Lab Brain Res, Bethesda, MD 20814 USA
关键词
glutamate receptor; hippocampus; in situ hybridization; neonate; ontogeny;
D O I
10.1046/j.1460-9568.2003.02850.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The N-methyl-D-aspartate receptor plays a critical role in the formation and maintenance of synapses during brain development. In the rodent, changes in subunit expression and assembly of the heteromeric receptor complex accompany these maturational processes. However, little is known about N-methyl-D-aspartate receptor subunit expression during human brain development. We used in situ hybridization to examine the distribution and relative abundance of NR1, NR2A and NR2B subunit messenger ribonucleic acids in the hippocampal formation and adjacent cortex of 34 human subjects at five stages of life (neonate, infant, adolescent, young adult and adult). At all ages, the three messenger ribonucleic acids were expressed in all subfields, predominantly by pyramidal neurons, granule cells and polymorphic hilar cells. However, their abundance varied across ontogeny. Levels of NR1 messenger ribonucleic acid in CA4, CA3 and CA2 subfields were significantly lower in the neonate than all other age groups. In the dentate gyrus, subiculum and parahippocampal gyrus, NR2B messenger ribonucleic acid levels were higher in the neonate than in older age groups. NR2A messenger ribonucleic acid levels remained constant, leading to an age-related increase in NR2A/2B transcript ratio. We conclude that N-methyl-D-aspartate receptor subunit messenger ribonucleic acids are differentially expressed during postnatal development of the human hippocampus, with a pattern similar but not identical to that seen in the rodent. Changes in subunit composition may thus contribute to maturational differences in human hippocampal N-methyl-D-aspartate receptor function, and to their role in the pathophysiology of schizophrenia and other neurodevelopmental disorders.
引用
收藏
页码:1197 / 1205
页数:9
相关论文
共 80 条
[31]  
Johnson M, 1996, NEUROBIOL AGING, V17, P639
[32]  
KARP SJ, 1993, J BIOL CHEM, V268, P3728
[33]  
Kleinman Joel E., 1995, P859
[34]   Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice [J].
Kutsuwada, T ;
Sakimura, K ;
Manabe, T ;
Takayama, C ;
Katakura, N ;
Kushiya, E ;
Natsume, R ;
Watanabe, M ;
Inoue, Y ;
Yagi, T ;
Aizawa, S ;
Arakawa, M ;
Takahashi, T ;
Nakamura, Y ;
Mori, H ;
Mishina, M .
NEURON, 1996, 16 (02) :333-344
[35]   Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies [J].
Laurie, DJ ;
Bartke, I ;
Schoepfer, R ;
Naujoks, K ;
Seeburg, PH .
MOLECULAR BRAIN RESEARCH, 1997, 51 (1-2) :23-32
[36]  
LAURIE DJ, 1994, J NEUROSCI, V14, P3180
[37]   Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses [J].
Law, AJ ;
Deakin, JFW .
NEUROREPORT, 2001, 12 (13) :2971-2974
[38]   Traumatic brain injury: Developmental differences in glutamate receptor response and the impact on treatment [J].
Lea, PM ;
Faden, AI .
MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS, 2001, 7 (04) :235-248
[39]   Schizophrenia as a disorder of neurodevelopment [J].
Lewis, DA ;
Levitt, P .
ANNUAL REVIEW OF NEUROSCIENCE, 2002, 25 :409-432
[40]  
LYNCH DR, 1995, J NEUROCHEM, V64, P1462