Surface charge limit in NEA superlattice photocathodes of polarized electron source

被引:74
作者
Togawa, K
Nakanishi, T [1 ]
Baba, T
Furuta, F
Horinaka, H
Ida, T
Kurihara, Y
Matsumoto, H
Matsuyama, T
Mizuta, M
Okumi, S
Omori, T
Suzuki, C
Takeuchi, Y
Wada, K
Wada, K
Yoshioka, M
机构
[1] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan
[2] NEC Corp Ltd, Fundamental Res Labs, Tsukuba, Ibaraki 3058501, Japan
[3] Osaka Prefecture Univ, Coll Engn, Sakai, Osaka 5998531, Japan
[4] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan
[5] NEC Corp Ltd, ULSI Device Dev Labs, Otsu, Shiga 5200833, Japan
关键词
D O I
10.1016/S0168-9002(98)00552-X
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The "surface charge limit (SCL)" phenomenon in negative electron affinity (NEA) photocathodes with GaAs-AlGaAs superlattice and InGaAs-AlGaAs strained-layer superlattice structures has been investigated systematically using a 70 keV polarized electron gun and a nanosecond multi-bunch laser. The space-charge-limited beam viiith multi-bunch structure (1.64 peak current, 12 ns bunch width and 15 or 25 ns bunch separation) could be produced from the superlattice photocathodes without suffering the SCL phenomenon. From the experimental results, it has been confirmed that the SCL phenomenon is governed by two physical mechanisms at the NEA surface region, the tunneling of conduction electrons against the surface potential barrier (escaping process) and that of valence holes against the surface band bending barrier (recombination process); these effects can be enhanced using the superlattice structure and heavy p-doping at the surface, respectively. We conclude that a superlattice with heavily p-doped surface is the best photocathode for producing the multi-bunch electron beam required for future linear colliders. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:431 / 445
页数:15
相关论文
共 30 条
[1]   THE STANFORD LINEAR-ACCELERATOR POLARIZED ELECTRON SOURCE [J].
ALLEY, R ;
AOYAGI, H ;
CLENDENIN, J ;
FRISCH, J ;
GARDEN, C ;
HOYT, E ;
KIRBY, R ;
KLAISNER, L ;
KULIKOV, A ;
MILLER, R ;
MULHOLLAN, G ;
PRESCOTT, C ;
SAEZ, P ;
SCHULTZ, D ;
TANG, H ;
TURNER, J ;
WITTE, K ;
WOODS, M ;
YEREMIAN, AD ;
ZOLOTOREV, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 365 (01) :1-27
[2]   STRAIN DEPENDENCE OF SPIN POLARIZATION OF PHOTOELECTRONS FROM A THIN GAAS LAYER [J].
AOYAGI, H ;
HORINAKA, H ;
KAMIYA, Y ;
KATO, T ;
KOSUGOH, T ;
NAKAMURA, S ;
NAKANISHI, T ;
OKUMI, S ;
SAKA, T ;
TAWADA, M ;
TSUBATA, M .
PHYSICS LETTERS A, 1992, 167 (04) :415-420
[3]  
AULENBACHER K, 1993, THESIS MAINZ
[4]   SUPER-LATTICE BAND-STRUCTURE IN THE ENVELOPE-FUNCTION APPROXIMATION [J].
BASTARD, G .
PHYSICAL REVIEW B, 1981, 24 (10) :5693-5697
[5]   Physics of high-intensity nanosecond electron source: Charge limit phenomenon in GaAs photocathodes [J].
HerreraGomez, A ;
Vergara, G ;
Spicer, WE .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (09) :7318-7323
[6]  
Herrmannsfeldt W. B., 1988, 331 SLAC
[7]  
*JLC GROUP, 1992, 9216 JLC GROUP
[8]  
*JLC GROUP, 1997, 971 KEK JLC GROUP
[9]   ACHIEVEMENT OF EXTREME HIGH-VACUUM IN THE ORDER OF 10-10 PA WITHOUT BAKING OF TEST CHAMBER [J].
KATO, S ;
AONO, M ;
SATO, K ;
BABA, Y .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (03) :2860-2864
[10]   DEPOLARIZATION OF PHOTOEMISSION AT THE SURFACE AND INTERIOR OF AN ALGAAS-GAAS SUPERLATTICE [J].
KURIHARA, Y ;
OMORI, T ;
NAKANISHI, T ;
AOYAGI, H ;
BABA, T ;
ITOGA, K ;
MIZUTA, M ;
NAKAMURA, S ;
TAKEUCHI, Y ;
TSUBATA, M ;
YOSHIOKA, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1992, 313 (03) :393-397