Optical solitary waves in the higher order nonlinear Schrodinger equation

被引:380
作者
Gedalin, M [1 ]
Scott, TC [1 ]
Band, YB [1 ]
机构
[1] BEN GURION UNIV NEGEV,DEPT PHYS,IL-84105 BEER SHEVA,ISRAEL
关键词
D O I
10.1103/PhysRevLett.78.448
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study solitary wave solutions of the higher order nonlinear Schrodinger equation for the propagation of short light pulses in an optical fiber. Using a scaling transformation we reduce the equation to a two-parameter canonical form. Solitary wave (l-soliton) solutions always exist provided easily met inequality constraints on the parameters in the equation are satisfied. Conditions for the existence of N-soliton solutions (N greater than or equal to 2) are determined; when these conditions are met the equation becomes the modified Korteweg-de Vries equation. A proper subset of these conditions meet the Painleve plausibility conditions for integrability.
引用
收藏
页码:448 / 451
页数:4
相关论文
共 17 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[3]  
Agrawal G. P., 2019, Nonlinear fiber optics, V6th
[4]  
BAKER GA, 1970, PADE APPROXIMANT THE
[5]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .1. ANOMALOUS DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (03) :142-144
[6]  
Hasegawa A., 1992, Optical Solitons in Fibers
[7]   EXACT ENVELOPE-SOLITON SOLUTIONS OF A NONLINEAR WAVE-EQUATION [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :805-809
[9]  
Kodama Y., 1987, IEEE J QUANTUM ELECT, V23, P5610
[10]   EXACT N-SOLITON SOLUTIONS OF THE EXTENDED NONLINEAR SCHRODINGER-EQUATION [J].
LIU, SL ;
WANG, WZ .
PHYSICAL REVIEW E, 1994, 49 (06) :5726-5730