Heterologous biosynthesis and characterization of the [2Fe-2S]-containing N-terminal domain of Clostridium pasteurianum hydrogenase

被引:19
作者
Atta, M
Lafferty, ME
Johnson, MK
Gaillard, J
Meyer, J [1 ]
机构
[1] CEA, Dept Biol Mol & Struct Metalloprot, F-38054 Grenoble, France
[2] CEA, Dept Rech Fondamentale Mat Condensee, F-38054 Grenoble, France
[3] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[4] Univ Georgia, Ctr Metalloenzyme Studies, Athens, GA 30602 USA
关键词
D O I
10.1021/bi9812928
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The primary structure of Clostridium pasteurianum hydrogenase I appears to be composed of modules suggesting that the various iron-sulfur clusters present in this enzyme might be segregated in structurally distinct domains. On the basis of this observation, a gene fragment encoding the 76 N-terminal residues of this enzyme has been expressed in Escherichia coli. The polypeptide thus produced contains a [2Fe-2S](n+) cluster of which the oxidized level (n = 2) has been monitored by UV-visible absorption, circular dichroism, and resonance Raman spectroscopy. This cluster can be reduced by dithionite or electrochemically to the n = 1 level which has been investigated by EPR and by low-temperature magnetic circular dichroism. The redox potential of the +2 to +1 transition is -400 mV (vs the normal hydrogen electrode). The spectroscopic and redox results indicate a [2Fe-2S](2+/+) chromophore coordinated by four cysteine ligands in a protein fold similar to that found in plant- and mammalian-type ferredoxins. Among the five cysteines present in the N-terminal hydrogenase fragment, four (in positions 34, 46, 49, and 62) are conserved in other sequences and are therefore the most likely ligands of the [2Fe-2S] site. The fifth cysteine, in position 39, can be dismissed on the grounds that the Cys39Ala mutation does not alter any of the properties of the iron-sulfur cluster. The spectroscopic signatures of this chromophore are practically identical with some of those reported for full-size hydrogenase. This confirms that C. pasteurianum hydrogenase I contains a [2Fe-2S] cluster and indicates that the polypeptide fold around the metal site of the N-terminal fragment is very similar, if not identical, to that occurring in the full-size protein. The N-terminal sequence of this hydrogenase is homologous to sequences of a number of proteins or protein domains, including a subunit of NADH-ubiquinone oxidoreductase of respiratory chains. From that, it can be anticipated that the structural domain isolated and described here is a building block of electron transfer complexes involved in various bioenergetic processes.
引用
收藏
页码:15974 / 15980
页数:7
相关论文
共 46 条
[1]   IRON-SULFUR CLUSTERS OF HYDROGENASE-I AND HYDROGENASE-II OF CLOSTRIDIUM-PASTEURIANUM [J].
ADAMS, MWW ;
ECCLESTON, E ;
HOWARD, JB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (13) :4932-4936
[2]   THE STRUCTURE AND MECHANISM OF IRON-HYDROGENASES [J].
ADAMS, MWW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (02) :115-145
[3]   NICKEL HYDROGENASES - IN SEARCH OF THE ACTIVE-SITE [J].
ALBRACHT, SPJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1188 (03) :167-204
[4]  
Ausubel FM., 1998, CURRENT PROTOCOLS MO
[5]   Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis [J].
Bui, ETN ;
Johnson, PJ .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1996, 76 (1-2) :305-310
[6]  
CROUSE BR, 1994, J BIOL CHEM, V269, P21030
[7]   HUMAN FERROCHELATASE IS AN IRON-SULFUR PROTEIN [J].
DAILEY, HA ;
FINNEGAN, MG ;
JOHNSON, MK .
BIOCHEMISTRY, 1994, 33 (02) :403-407
[8]   Infrared spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio gigas [J].
deLacey, AL ;
Hatchikian, EC ;
Volbeda, A ;
Frey, M ;
FontecillaCamps, JC ;
Fernandez, VM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (31) :7181-7189
[9]   THE MULTIPLICITY OF DOMAINS IN PROTEINS [J].
DOOLITTLE, RF .
ANNUAL REVIEW OF BIOCHEMISTRY, 1995, 64 :287-314
[10]  
FEE JA, 1984, J BIOL CHEM, V259, P124