Interaction between cytochrome c2 and the photosynthetic reaction center from Rhodobacter sphaeroides:: Effects of charge-modifying mutations on binding and electron transfer

被引:43
作者
Tetreault, M [1 ]
Rongey, SH [1 ]
Feher, G [1 ]
Okamura, MY [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1021/bi010222p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The electrostatic interactions governing binding and electron transfer from cytochrome c(2) (cyt c(2)) to the reaction center (RC) from the photosynthetic bacteria Rhodobacter sphaeroides were studied by using site-directed mutagenesis to change the charges of residues on the RC surface. Charge-reversing mutations (acid --> Lys) decreased the binding affinity for cyt c(2). Dissociation constants, K-D (0.3-250 muM), were largest for mutations of Asp M184 and nearby acid residues, identifying the main region for electrostatic interaction with cyt c(2). The second-order rate constants, k(2) (1-17 x 10(8) M-1 s(-1)), increased with increasing binding affinity (log k(2) vs log 1/K-D had a slope of similar to0.4), indicating a transition state structurally related to the final complex. In contrast, first-order electron transfer rates, k(e), for the bound cyt did not change significantly (<3-fold), indicating that electron tunneling pathways were unchanged by mutation. Charge-neutralizing mutations (acid --> amide) showed changes in binding free energies of similar to 1/2 the free energy changes due to the corresponding charge-reversing mutations, suggesting that the charges in the docked complex remain well solvated. Charge-enhancing mutations (amide --> acid) produced free energy changes of the same magnitude (but opposite sign) as changes due to the charge-neutralizing mutations in the same region, indicating a diffuse electrostatic potential due to cyt c(2). A two-domain model is proposed, consisting of an electrostatic docking domain with charged surfaces separated by a water layer and a hydrophobic tunneling domain with atomic contacts that provide an efficient pathway for electron transfer.
引用
收藏
页码:8452 / 8462
页数:11
相关论文
共 52 条
[1]   Co-crystallization and characterization of the photosynthetic reaction center-cytochrome c(2) complex from Rhodobacter sphaeroides [J].
Adir, N ;
Axelrod, HL ;
Beroza, P ;
Isaacson, RA ;
Rongey, SH ;
Okamura, MY ;
Feher, G .
BIOCHEMISTRY, 1996, 35 (08) :2535-2547
[2]   STRUCTURE OF THE REACTION CENTER FROM RHODOBACTER-SPHAEROIDES R-26 - THE PROTEIN SUBUNITS [J].
ALLEN, JP ;
FEHER, G ;
YEATES, TO ;
KOMIYA, H ;
REES, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (17) :6162-6166
[3]   CRYSTALLIZATION AND X-RAY STRUCTURE DETERMINATION OF CYTOCHROME-C(2) FROM RHODOBACTER-SPHAEROIDES IN 3 CRYSTAL FORMS [J].
AXELROD, HL ;
FEHER, G ;
ALLEN, JP ;
CHIRINO, AJ ;
DAY, MW ;
HSU, BT ;
REES, DC .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :596-602
[4]  
Axelrod HL, 1999, BIOPHYS J, V76, pA20
[5]  
BARTSCH RG, 1978, PHOTOSYNTHETIC BACTE, P249
[6]   PROTEIN ELECTRON-TRANSFER RATES SET BY THE BRIDGING SECONDARY AND TERTIARY STRUCTURE [J].
BERATAN, DN ;
BETTS, JN ;
ONUCHIC, JN .
SCIENCE, 1991, 252 (5010) :1285-1288
[7]   EXPRESSION OF THE RHODOBACTER-SPHAEROIDES CYTOCHROME-C2 STRUCTURAL GENE [J].
BRANDNER, JP ;
MCEWAN, AG ;
KAPLAN, S ;
DONOHUE, TJ .
JOURNAL OF BACTERIOLOGY, 1989, 171 (01) :360-368
[8]  
CAFFREY MS, 1992, J BIOL CHEM, V267, P6317
[9]   CYTOCHROME-C2 AND REACTION CENTER OF RHODOSPEUDOMONAS-SPHEROIDES GA MEMBRANES - EXTINCTION COEFFICIENTS, CONTENT, HALF-REDUCTION POTENTIALS, KINETICS AND ELECTRIC-FIELD ALTERATIONS [J].
DUTTON, PL ;
PETTY, KM ;
BONNER, HS ;
MORSE, SD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 387 (03) :536-556
[10]  
DUTTON PL, 1978, PHOTOSYNTHETIC BACTE, pCH28