Alternative mechanisms associated with silencing of CDKN1C in Beckwith-Wiedemann syndrome

被引:19
作者
Diaz-Meyer, N
Yang, Y
Sait, SN
Maher, ER
Higgins, MJ
机构
[1] Roswell Pk Canc Inst, Dept Canc Genet, Buffalo, NY 14263 USA
[2] Roswell Pk Canc Inst, Cytogenet Lab, Buffalo, NY 14263 USA
[3] Univ Birmingham, Dept Paediat & Child Hlth, Sect Med & Mol Genet, Birmingham, W Midlands, England
关键词
D O I
10.1136/jmg.2004.030593
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Mutations in the imprinted gene CDKN1C account for approximately 10% of Beckwith Wiedemann syndrome (BWS) cases. Fibroblasts from BWS patients with loss of methylation (LOM) at the imprinting control region (ICR) KvDMR1 have reduced CDKN1C expression. Another group of BWS patients with downregulated CDKN1C expression but with normal methylation at KvDMR1 has been identified. Objective: To investigate the mechanism of CDKN1C silencing in BWS in these two classes of patients. Methods: The CDKN1C promoter region was analysed for changes in DNA methylation using bisulphite sequencing, and for alterations in chromatin structure using the chromatin immunoprecipitation (ChIP) assay. Results: There was only spurious CpG methylation of the CDKN1C promoter in fibroblast DNA from both normal individuals and patients with BWS, irrespective of the methylation status of KvDMR1. There was no detectable change in chromatin structure at the CDKN1C promoter in patients with LOM at KvDMR1. BWS patients with downregulated CDKN1C and normal methylation at KvDMR1 had depletion of dimethylated H3-K4 and enrichment of dimethylated H3-K9 and HP1c at the CDKN1C promoter, suggesting that in these cases gene silencing is associated with repressive chromatin changes. Conclusions: CDKN1C may be downregulated by multiple mechanisms including some that do not involve promoter methylation. In BWS patients with normal methylation at KvDMR1 and reduced expression of CDKN1C, repressive chromatin may play a role, but the absence of methylation and repressive chromatin structure at the CDKN1C promoter in BWS patients with LOM at KvDMR1 argues for a direct role of this epimutation in silencing CDKN1C.
引用
收藏
页码:648 / 655
页数:8
相关论文
共 45 条
[1]   H19 and Igf2 -: enhancing the confusion? [J].
Arney, KL .
TRENDS IN GENETICS, 2003, 19 (01) :17-23
[2]   Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation:: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS [J].
Bliek, J ;
Maas, SM ;
Ruijter, JM ;
Hennekam, RCM ;
Alders, M ;
Westerveld, A ;
Mannens, MMAM .
HUMAN MOLECULAR GENETICS, 2001, 10 (05) :467-476
[3]   Oppositely imprinted genes p57Kip2 and Igf2 interact in a mouse model for Beckwith-Wiedemann syndrome [J].
Caspary, T ;
Cleary, MA ;
Perlman, EJ ;
Zhang, PM ;
Elledge, SJ ;
Tilghman, SM .
GENES & DEVELOPMENT, 1999, 13 (23) :3115-3124
[4]   Chromosome 11p15.5 regional imprinting: Comparative analysis of KIP2 and H19 in human tissues and Wilms' tumors [J].
Chung, WY ;
Yuan, L ;
Feng, L ;
Hensle, T ;
Tycko, B .
HUMAN MOLECULAR GENETICS, 1996, 5 (08) :1101-1108
[5]  
CLARK SJ, 1994, NUCLEIC ACIDS RES, V22, P2990, DOI 10.1093/nar/22.15.2990
[6]   Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects [J].
DeBaun, MR ;
Niemitz, EL ;
McNeil, DE ;
Brandenburg, SA ;
Lee, MP ;
Feinberg, AP .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (03) :604-611
[7]   Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome [J].
Diaz-Meyer, N ;
Day, CD ;
Khatod, K ;
Maher, ER ;
Cooper, W ;
Reik, W ;
Junien, C ;
Graham, G ;
Algar, E ;
Kaloustian, VMD ;
Higgins, MJ .
JOURNAL OF MEDICAL GENETICS, 2003, 40 (11) :797-801
[8]   Insulator and silencer sequences in the imprinted region of human chromosome 11p15.5 [J].
Du, MJ ;
Beatty, LG ;
Zhou, WJ ;
Lew, J ;
Schoenherr, C ;
Weksberg, R ;
Sadowski, PD .
HUMAN MOLECULAR GENETICS, 2003, 12 (15) :1927-1939
[9]   Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome [J].
Engel, JR ;
Smallwood, A ;
Harper, A ;
Higgins, MJ ;
Oshimura, M ;
Reik, O ;
Schofield, PN ;
Maher, ER .
JOURNAL OF MEDICAL GENETICS, 2000, 37 (12) :921-926
[10]   Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1 [J].
Fitzpatrick, GV ;
Soloway, PD ;
Higgins, MJ .
NATURE GENETICS, 2002, 32 (03) :426-431