Percolation, renormalization, and quantum computing with nondeterministic gates

被引:85
作者
Kieling, K.
Rudolph, T.
Eisert, J.
机构
[1] Univ London Imperial Coll Sci & Technol, QOLS, Blackett Lab, London SW7 2BW, England
[2] Univ London Imperial Coll Sci & Technol, Inst Math Sci, London SW7 2PE, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevLett.99.130501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply a notion of static renormalization to the preparation of entangled states for quantum computing, exploiting ideas from percolation theory. Such a strategy yields a novel way to cope with the randomness of nondeterministic quantum gates. This is most relevant in the context of optical architectures, where probabilistic gates are common, and cold atoms in optical lattices, where hole defects occur. We demonstrate how to efficiently construct cluster states without the need for rerouting, thereby avoiding a massive amount of conditional dynamics; we furthermore show that except for a single layer of gates during the preparation, all subsequent operations can be shifted to the final adapted single-qubit measurements. Remarkably, cluster state preparation is achieved using essentially the same scaling in resources as if deterministic gates were available.
引用
收藏
页数:4
相关论文
共 27 条
[1]   On the number of incipient spanning clusters [J].
Aizenman, M .
NUCLEAR PHYSICS B, 1997, 485 (03) :551-582
[2]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[3]   Generation of atomic cluster states through the cavity input-output process [J].
Cho, JY ;
Lee, HW .
PHYSICAL REVIEW LETTERS, 2005, 95 (16)
[4]   Noise thresholds for optical quantum computers [J].
Dawson, CM ;
Haselgrove, HL ;
Nielsen, MA .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[5]  
DONG P, ARXIVQUANTPH0511045
[6]   Optimizing linear optics quantum gates [J].
Eisert, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[7]  
Grimmett G., 1999, PERCOLATION
[8]   Novel schemes for measurement-based quantum computation [J].
Gross, D. ;
Eisert, J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (22)
[9]   Potential and limits to cluster-state quantum computing using probabilistic gates [J].
Gross, D. ;
Kieling, K. ;
Eisert, J. .
PHYSICAL REVIEW A, 2006, 74 (04)
[10]   Multiparty entanglement in graph states [J].
Hein, M ;
Eisert, J ;
Briegel, HJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062311-1