Hydrogen absorption kinetics of the catalyzed MgH2 by niobium oxide

被引:55
作者
Hanada, Nobuko [1 ]
Ichikawa, Takayuki [1 ]
Fujii, Hironobu [1 ]
机构
[1] Hiroshima Univ, Inst Adv Mat Res, Higashihiroshima 7398530, Japan
关键词
hydrogen absorbing materials; ball milling; kinetics; catalysis;
D O I
10.1016/j.jallcom.2006.11.182
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrogen absorption kinetics of magnesium hydride (MgH2) composite doped with 1 mol% Nb2O5 prepared by ball milling was examined under various temperatures and pressures. The composite after dehydrogenation at 200 degrees C absorbs gaseous hydrogen of similar to 4.5 mass% within 15 s even at room temperature under 1.0 MPa hydrogen pressure or at 0 degrees C under 3.0 MPa, and finally their capacities reach up to 5 mass%. At 150 and 250 degrees C, a large amount of hydrogen gas of more than 5.0 mass% is absorbed within 30 s and their capacity reach up to 5.7 mass% under 1.0 MPa. Interestingly, the absorption kinetics of the catalyzed Mg shows two unusual behaviors in the initial reaction stage of the time scale within 30 s. One is that the kinetics decreases with increase in the temperature from 150 to 250 degrees C under any pressures (0.2, 1.0 and 3.0 MPa). The other is that the amount of hydrogen absorption drastically increases with increase in the initial pressure from 1.0 to 3.0 MPa at 0 degrees C or from 0.2 to 1.0 MPa at room temperature (similar to 20 degrees C). These behaviors may be explained by taking into account heat generation of Mg due to fast hydrogen uptake in such a short time. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 16 条
[1]   Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents [J].
Barkhordarian, G ;
Klassen, T ;
Bormann, R .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 407 (1-2) :249-255
[2]   Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst [J].
Barkhordarian, G ;
Klassen, T ;
Bormann, R .
SCRIPTA MATERIALIA, 2003, 49 (03) :213-217
[3]   Effect of Nb2O5 content on hydrogen reaction kinetics of Mg [J].
Barkhordarian, G ;
Klassen, T ;
Bormann, R .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 364 (1-2) :242-246
[4]   Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction [J].
Barkhordarian, Gagik ;
Klassen, Thomas ;
Bormann, Rudiger .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (22) :11020-11024
[5]   Addition of nanosized Cr2O3 to magnesium for improvement of the hydrogen sorption properties [J].
Bobet, JL ;
Desmoulins-Krawiec, S ;
Grigorova, E ;
Cansell, F ;
Chevalier, B .
JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 351 (1-2) :217-221
[6]   Hydrogen sorption of Mg-based mixtures elaborated by reactive mechanical grinding [J].
Bobet, JL ;
Chevalier, B ;
Song, MY ;
Darriet, B ;
Etourneau, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 336 (1-2) :292-296
[7]   Cycling and thermal stability of nanostructured MgH2-Cr2O3 composite for hydrogen storage [J].
Dehouche, Z ;
Klassen, T ;
Oelerich, W ;
Goyette, J ;
Bose, TK ;
Schulz, R .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 347 (1-2) :319-323
[8]   Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball milling [J].
Hanada, N ;
Ichikawa, T ;
Fujii, H .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 404 :716-719
[9]   Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling [J].
Hanada, N ;
Ichikawa, T ;
Fujii, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (15) :7188-7194
[10]   Catalytic effect of niobium oxide on hydrogen storage properties of mechanically ball milled MgH2 [J].
Hanada, Nobuko ;
Ichikawa, Takayuki ;
Fujii, Hironobu .
PHYSICA B-CONDENSED MATTER, 2006, 383 (01) :49-50