Plasmo-photonic Nanowire Arrays for Large-Area Surface-Enhanced Raman Scattering Sensors

被引:2
作者
Caldwell, Joshua D. [1 ]
Glembocki, Orest J. [1 ]
Rendell, Ronald W. [1 ]
Prokes, Sharka M. [1 ]
Long, James P. [1 ]
Bezares, Francisco J. [1 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
来源
PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES VIII | 2010年 / 7757卷
关键词
surface enhanced Raman scattering; SERS; e-beam lithography; Reactive ion etching; plasmonics; nanoparticles; plasmonic arrays; grating; NANOPARTICLE ARRAYS; SILVER;
D O I
10.1117/12.860504
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite surface-enhanced Raman scattering (SERS) being first observed in the late 1970's, efforts to provide reproducible SERS-based chemical sensors have been hindered by the inability to make large-area devices with a uniform SERS response. Furthermore, variations in the observed spectra occur due to the variable interactions and orientations of the analyte with the textured SERS surfaces. Here we report on periodic arrays of Ag- and Au-coated vertical silicon nanopillars fabricated by e-beam lithography and reactive ion etching for use as SERS sensor templates that provide both large and uniform enhancement factors (up to 1x10(8)) over the structure surface area. We discuss the impact of the overall geometry of the structures, by varying both the diameter and the edge-to-edge spacing in an effort to optimize the SERS response for a given excitation laser wavelength. Calculations of the electromagnetic field distributions within such structures were also performed and support the behavior observed experimentally.
引用
收藏
页数:8
相关论文
共 18 条
[1]   Metal-adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering [J].
Alexson, Dimitri A. ;
Badescu, Stefan C. ;
Glembocki, Orest J. ;
Prokes, Sharka M. ;
Rendell, Ronald W. .
CHEMICAL PHYSICS LETTERS, 2009, 477 (1-3) :144-149
[2]   Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals [J].
Baumberg, JJ ;
Kelf, TA ;
Sugawara, Y ;
Cintra, S ;
Abdelsalam, ME ;
Bartlett, PN ;
Russell, AE .
NANO LETTERS, 2005, 5 (11) :2262-2267
[3]   Electromagnetic interactions in plasmonic nanoparticle arrays [J].
Bouhelier, A ;
Bachelot, R ;
Im, JS ;
Wiederrecht, GP ;
Lerondel, G ;
Kostcheev, S ;
Royer, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (08) :3195-3198
[4]  
Chou S., 2010, COMMUNICATION
[5]   Multipolar surface plasmon peaks on gold nanotriangles [J].
Felidj, N. ;
Grand, J. ;
Laurent, G. ;
Aubard, J. ;
Levi, G. ;
Hohenau, A. ;
Galler, N. ;
Aussenegg, F. R. ;
Krenn, J. R. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (09)
[6]   Resonant field enhancements from metal nanoparticle arrays [J].
Genov, DA ;
Sarychev, AK ;
Shalaev, VM ;
Wei, A .
NANO LETTERS, 2004, 4 (01) :153-158
[7]   Dielectric-substrate-induced surface-enhanced Raman scattering [J].
Glembocki, O. J. ;
Rendell, R. W. ;
Alexson, D. A. ;
Prokes, S. M. ;
Fu, A. ;
Mastro, M. A. .
PHYSICAL REVIEW B, 2009, 80 (08)
[8]   Measurement of Local Temperatures using μ-Raman of SiC and AlGaN-GaN/SiC Power and RF Devices [J].
Glembocki, Orest J. ;
Caldwell, Joshua D. ;
Mittereder, Jeffrey A. ;
Calame, Jeffrey P. ;
Binari, Steven C. ;
Stahlbush, Robert E. .
SILICON CARBIDE AND RELATED MATERIALS 2007, PTS 1 AND 2, 2009, 600-603 :1111-1114
[9]   The effect of mutual orientation on the spectra of metal nanoparticle rod-rod and rod-sphere pairs [J].
Gluodenis, M ;
Foss, CA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (37) :9484-9489
[10]   Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing [J].
Gopinath, Ashwin ;
Boriskina, Svetlana V. ;
Premasiri, W. Ranjith ;
Ziegler, Lawrence ;
Reinhard, Bjoern M. ;
Dal Negro, Luca .
NANO LETTERS, 2009, 9 (11) :3922-3929